• Acta Optica Sinica
  • Vol. 44, Issue 15, 1513003 (2024)
Feng Qiu*
Author Affiliations
  • School and Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang , China
  • show less
    DOI: 10.3788/AOS240911 Cite this Article Set citation alerts
    Feng Qiu. Development of Electro-Optical Polymer Modulators (Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513003 Copy Citation Text show less
    References

    [1] Mi L. Can photonic chips enable China to overtake by changing lanes[J]. Look Out, 52-55(2022).

    [2] Sun C, Wade M T, Lee Y et al. Single-chip microprocessor that communicates directly using light[J]. Nature, 528, 534-538(2015).

    [3] Marpaung D, Yao J P, Capmany J. Integrated microwave photonics[J]. Nature Photonics, 13, 80-90(2019).

    [4] Zhou Z P, Yin B, Deng Q Z et al. Lowering the energy consumption in silicon photonic devices and systems[J]. Photonics Research, 3, B28-B46(2015).

    [5] Koos C, Leuthold J, Freude W et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration[J]. Journal of Lightwave Technology, 34, 256-268(2016).

    [7] Agrell E, Karlsson M, Chraplyvy A R et al. Roadmap of optical communications[J]. Journal of Optics, 18, 063002(2016).

    [8] Heni W, Kutuvantavida Y, Haffner C et al. Silicon-organic and plasmonic-organic hybrid photonics[J]. ACS Photonics, 4, 1576-1590(2017).

    [9] Nozaki K, Matsuo S, Fujii T et al. Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear functions[J]. Nature Photonics, 13, 454-459(2019).

    [10] He M B, Xu M Y, Ren Y X et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s-1 and beyond[J]. Nature Photonics, 13, 359-364(2019).

    [11] Shams-Ansari A, Renaud D, Cheng R et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate[J]. Optica, 9, 408-411(2022).

    [12] Luke K, Kharel P, Reimer C et al. Wafer-scale low-loss lithium niobate photonic integrated circuits[J]. Optics Express, 28, 24452-24458(2020).

    [13] Ortmann J E, Eltes F, Caimi D et al. Ultra-low-power tuning in hybrid barium titanate-silicon nitride electro-optic devices on silicon[J]. ACS Photonics, 6, 2677-2684(2019).

    [14] Ban D S, Liu G L, Yu H Y et al. Low driving voltage and low optical loss electro-optic modulators based on lead zirconate titanate thin film on silicon substrate[J]. Journal of Lightwave Technology, 40, 2939-2943(2022).

    [15] Wu J Y, Peng C C, Xiao H Y et al. Donor modification of nonlinear optical chromophores: synthesis, characterization, and fine-tuning of chromophores' mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest-host electro-optic materials[J]. Dyes and Pigments, 104, 15-23(2014).

    [16] Liu F G, Xiao H Y, Yang Y H et al. The design of nonlinear optical chromophores exhibiting large electro-optic activity and high thermal stability: the role of donor groups[J]. Dyes and Pigments, 130, 138-147(2016).

    [17] Stähelin M, Walsh C A, Burland D M et al. Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry[J]. Journal of Applied Physics, 73, 8471-8479(1993).

    [18] Yu F, Spring A M, Li L et al. An enhanced host-guest electro-optical polymer system using poly (norbornene-dicarboximides) via ROMP[J]. Journal of Polymer Science Part A: Polymer Chemistry, 51, 1278-1284(2013).

    [19] Liu J L, Ouyang C B, Huo F Y et al. Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials[J]. Dyes and Pigments, 181, 108509(2020).

    [20] Ouyang C B, Liu J L, Liu Q et al. Preparation of main-chain polymers based on novel monomers with D-π-A structure for application in organic second-order nonlinear optical materials with good long-term stability[J]. ACS Applied Materials & Interfaces, 9, 10366-10370(2017).

    [21] Xu C Z, Wu B, Dalton L R et al. New random main-chain, second-order nonlinear optical polymers[J]. Macromolecules, 25, 6716-6718(1992).

    [22] Pan J, Chen M F, Warner W et al. Synthesis of block copolymers containing a main chain polymeric NLO segment[J]. Macromolecules, 33, 4673-4681(2000).

    [23] Qin A J, Yang Z, Bai F L et al. Design and synthesis of a thermally stable second-order nonlinear optical chromophore and its poled polymers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 41, 2846-2853(2003).

    [24] Tsai H C, Kuo W J, Hsiue G H. Highly thermal stable main-chain nonlinear optical polyimide based on two-dimensional carbazole chromophores[J]. Macromolecular Rapid Communications, 26, 986-991(2005).

    [25] Deng G W, Bo S H, Zhou T T et al. Facile synthesis and electro-optic activities of new polycarbonates containing tricyanofuran-based nonlinear optical chromophores[J]. Journal of Polymer Science Part A: Polymer Chemistry, 51, 2841-2849(2013).

    [26] Tsutsumi N, Matsumoto O, Sakai W et al. Nonlinear optical polymers. 2. Novel NLO linear polyurethane with dipole moments aligned transverse to the main backbone[J]. Macromolecules, 29, 592-597(1996).

    [27] Tirelli N, Altomare A, Solaro R et al. Structure-activity relationship of new NLO organic materials based on push-pull azodyes: 4. Side chain polymers[J]. Polymer, 41, 415-421(2000).

    [28] Campbell D, Dix L R, Rostron P. Synthesis of poly vinyl ethers with pendant non-linear optical azo dyes[J]. European Polymer Journal, 29, 249-253(1993).

    [29] Ye C, Marks T J, Yang J et al. Synthesis of molecular arrays with nonlinear optical properties: second-harmonic generation by covalently functionalized glassy polymers[J]. Macromolecules, 20, 2322-2324(1987).

    [30] Faccini M, Balakrishnan M, Torosantucci R et al. Facile attachment of nonlinear optical chromophores to polycarbonates[J]. Macromolecules, 41, 8320-8323(2008).

    [31] Saadeh H, Wang L M, Yu L P. A new synthetic approach to novel polymers exhibiting large electrooptic coefficients and high thermal stability[J]. Macromolecules, 33, 1570-1576(2000).

    [32] Guo L, Guo Z P, Li X B. Design and preparation of side chain electro-optic polymeric materials based on novel organic second order nonlinear optical chromophores with double carboxyl groups[J]. Journal of Materials Science: Materials in Electronics, 29, 2577-2584(2018).

    [33] Miura H, Qiu F, Spring A M et al. High thermal stability 40 GHz electro-optic polymer modulators[J]. Optics Express, 25, 28643-28649(2017).

    [34] Lu G W, Hong J X, Qiu F et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit·s-1 for energy-efficient datacentres and harsh-environment applications[J]. Nature Communications, 11, 4224(2020).

    [35] Shi Z W, Luo J D, Huang S et al. Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process[J]. Journal of Materials Chemistry, 22, 951-959(2012).

    [36] Shi Z W, Cui Y Z, Huang S et al. Dipolar chromophore facilitated Huisgen cross-linking reactions for highly efficient and thermally stable electrooptic polymers[J]. ACS Macro Letters, 1, 793-796(2012).

    [37] Chen Z, Bo S H, Qiu L et al. Synthesis and optical properties of a crosslinkable polymer system containing tricyanofuran-based chromophores with excellent electro-optic activity and thermal stability[J]. Polymer International, 61, 1376-1381(2012).

    [38] Zhang C, Wang C G, Yang J L et al. Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: role of cross-linking and monomer rigidity[J]. Macromolecules, 34, 235-243(2001).

    [39] Kieninger C, Füllner C, Zwickel H et al. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss[J]. Optics Express, 28, 24693-24707(2020).

    [40] Qiu F, Spring A M, Miura H et al. Athermal hybrid silicon/polymer ring resonator electro-optic modulator[J]. ACS Photonics, 3, 780-783(2016).

    [41] Lee M, Katz H E, Erben C et al. Broadband modulation of light by using an electro-optic polymer[J]. Science, 298, 1401-1403(2002).

    [42] Enami Y, Derose C T, Mathine D et al. Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients[J]. Nature Photonics, 1, 180-185(2007).

    [43] Qiu F, Spring A M, Yu F et al. Thin TiO2 core and electro-optic polymer cladding waveguide modulators[J]. Applied Physics Letters, 102, 233504(2013).

    [44] Kieninger C, Kutuvantavida Y, Miura H et al. Demonstration of long-term thermally stable silicon-organic hybrid modulators at 85 ℃[J]. Optics Express, 26, 27955-27964(2018).

    [45] Haffner C, Heni W, Fedoryshyn Y et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale[J]. Nature Photonics, 9, 525-528(2015).

    [46] Baehr-Jones T, Hochberg M, Wang G X et al. Optical modulation and detection in slotted silicon waveguides[J]. Optics Express, 13, 5216-5226(2005).

    [47] Takayesu J, Hochberg M, Baehr-Jones T et al. A hybrid electrooptic microring resonator-based 1×4×1 ROADM for wafer scale optical interconnects[J]. Journal of Lightwave Technology, 27, 440-448(2009).

    [48] Gould M, Baehr-Jones T, Ding R et al. Silicon-polymer hybrid slot waveguide ring-resonator modulator[J]. Optics Express, 19, 3952-3961(2011).

    [49] Qiu F, Spring A M, Hong J X et al. Electro-optic polymer ring resonator modulator on a flat silicon-on-insulator[J]. Laser & Photonics Reviews, 11, 1700061(2017).

    [50] Qiu F, Spring A M, Hong J X et al. Plate-slot polymer waveguide modulator on silicon-on-insulator[J]. Optics Express, 26, 11213-11221(2018).

    [51] Block B A, Younkin T R, Davids P S et al. Electro-optic polymer cladding ring resonator modulators[J]. Optics Express, 16, 18326-18333(2008).

    [52] Yu H Y, Li B, Wang L et al. Polymer micro-ring modulator on silicon nitride platform[J]. Applied Physics Letters, 123, 191111(2023).