• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 12, 120602 (2023)
Xin HE1, Meiqi SONG1、**, and Xiaojing LIU1、2、*
Author Affiliations
  • 1College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.120602 Cite this Article
    Xin HE, Meiqi SONG, Xiaojing LIU. Uncertainty quantification methodology for model parameters in sub-channel codes using MCMC sampling[J]. NUCLEAR TECHNIQUES, 2023, 46(12): 120602 Copy Citation Text show less
    References

    [1] D'Auria F, Camargo C, Mazzantini O. Best Estimate Plus Uncertainty (BEPU) approach in licensing current nuclear reactors[J]. Nuclear Engineering and Design, 248, 317-328(2012).

    [2] RAN Xu, WU Dan, CHEN Bingde et al. Best estimate plus uncertainty method and its applications[J]. Nuclear Power Engineering, 34, 120-123(2013).

    [3] Skorek T, de Crécy A, Kovtonyuk A et al. Quantification of the uncertainty of the physical models in the system thermal-hydraulic codes–PREMIUM benchmark[J]. Nuclear Engineering and Design, 354, 110199(2019).

    [4] YU Jianhui, ZHANG Jingyu, ZHENG Limin. ASTRUM optimization for large-break LOCA analysis[J]. Nuclear Techniques, 37, 090606(2014).

    [5] Glaeser H. GRS method for uncertainty and sensitivity evaluation of code results and applications[J]. Science and Technology of Nuclear Installations, 2008, 1-7(2008).

    [6] Borges R C, D'Auria F, Alvim A C M. Independent qualification of the CIAU tool based on the uncertainty estimate in the prediction of Angra 1 NPP inadvertent load rejection transient[C], 163-170(2009).

    [7] Wu X, Xie Z Y, Alsafadi F et al. A comprehensive survey of the inverse uncertainty quantification of physical model parameters in nuclear system thermal-hydraulics codes[J]. Nuclear Engineering and Design, 384, 111460(2021).

    [8] Xu H, Badea A F, Cheng X. Sensitivity analysis of thermal-hydraulic models based on FFTBM-MSM two-layer method for PKL IBLOCA experiment[J]. Annals of Nuclear Energy, 147, 107732(2020).

    [9] Joucla J, Probst P. DIPE: Determination of input parameter uncertainties methodology applied to CATHARE V2.51[J]. Journal of Power and Energy Systems, 2, 409-420(2008).

    [10] Celeux G, Grimaud A, Lefèbvre Y et al. Identifying intrinsic variability in multivariate systems using linearized inverse methods[J]. Inverse Problems in Science and Engineering, 18, 401-415(2010).

    [11] Wang G S, Chen S L. Evaluation of a soil greenhouse gas emission model based on Bayesian inference and MCMC: model uncertainty[J]. Ecological Modelling, 253, 97-106(2013).

    [12] Spiegelhalter D J, Best N G, Gilks W R et al. Hepatitis B: a case study using the MCMC methods[J]. Markov Chain Monte Carlo in Practice, 89, 575-598(1996).

    [13] Li D, Liu X J, Yang Y H. Investigation of uncertainty quantification method for BE models using MCMC approach and application to assessment with FEBA data[J]. Annals of Nuclear Energy, 107, 62-70(2017).

    [14] Wu X, Kozlowski T, Meidani H et al. Inverse uncertainty quantification using the modular Bayesian approach based on the Gaussian process Part 1: theory[J]. Nuclear Engineering and Design, 335, 339-355(2018).

    [15] RAN Xu, ZHANG Xiaohua, LI Jie et al. Overview of the development of the best estimate plus uncertainty safety analysis[J]. Science & Technology Vision, 11-13, 16(2015).

    [16] Skorek T, de Crécy A, Kovtonyuk A et al. Quantification of the uncertainty of the physical models in the system thermal-hydraulic codes–PREMIUM benchmark[J]. Nuclear Engineering and Design, 354, 110199(2019).

    [17] Li J L, Marzouk Y. Adaptive construction of surrogates for the Bayesian solution of inverse problems[J]. SIAM Journal of Scientific Computing, 36, A1163-A1186(2014).

    [18] LI Dong. Research on quantification method of uncertainty of optimal estimation model and application of reflooding model evaluation[D](2017).

    [19] Borowiec K, Wang C, Kozlowski T et al. Uncertainty quantification for steady-state PSBT benchmarks using surrogate models[J]. Transactions of the American Nuclear Society, 117, 119-122(2017).

    [20] DU Yun, LIU Xiaojing, CHENG Xu. Uncertainty analysis of COBRA-Ⅳ calculation of 8 × 8 bundle experiment[J]. Atomic Energy Science and Technology, 48, 622-629(2014).

    [21] Panka I, Keresztúri A. Assessment of the uncertainties of COBRA subchannel calculations using a PWR-type rod bundle and the OECD NEA UAM and the PSBT benchmark data[J]. Kerntechnik, 79, 359-366(2014).

    [22] ZHANG Juntao, LIU Xiaojing, ZHANG Tengfei et al. Quantitative analysis of uncertainty in experimental calculation of PSBT cavitation distribution by subchannel program[J]. Journal of Shanghai Jiao Tong University, 56, 1420-1426(2022).

    [23] Wilks S S. Determination of sample sizes for setting tolerance limits[J]. The Annals of Mathematical Statistics, 12, 91-96(1941).

    Xin HE, Meiqi SONG, Xiaojing LIU. Uncertainty quantification methodology for model parameters in sub-channel codes using MCMC sampling[J]. NUCLEAR TECHNIQUES, 2023, 46(12): 120602
    Download Citation