• Chinese Optics Letters
  • Vol. 20, Issue 2, 021402 (2022)
Hanshuo Wu1, Jiangtao Xu2, Liangjin Huang1, Xianglong Zeng2, and Pu Zhou1、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.3788/COL202220.021402 Cite this Article Set citation alerts
    Hanshuo Wu, Jiangtao Xu, Liangjin Huang, Xianglong Zeng, Pu Zhou. High-power fiber laser with real-time mode switchability[J]. Chinese Optics Letters, 2022, 20(2): 021402 Copy Citation Text show less
    References

    [1] Y. Feng, L. R. Taylor, D. B. Calia. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star. Opt. Express, 17, 19021(2009).

    [2] W. Shi, Q. Fang, X. Zhu, R. A. Norwood, N. Peyghambarian. Fiber lasers and their applications [Invited]. Appl. Opt., 53, 6554(2014).

    [3] J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, G. Santarelli. High-power all-fiber ultra-low noise laser. Appl. Phys. B, 124, 114(2018).

    [4] J. Shi, C. Li, H. Mao, Y. Ren, Z.-C. Luo, A. Rosenthal, K. K. Y. Wong. Grüneisen-relaxation photoacoustic microscopy at 1.7 µm and its application in lipid imaging. Opt. Lett., 45, 3268(2020).

    [5] R. Klas, A. Kirsche, M. Gebhardt, J. Buldt, H. Stark, S. Hädrich, J. Rothhardt, J. Limpert. Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source. PhotoniX, 2, 4(2021).

    [6] D. J. Richardson, J. Nilsson, W. A. Clarkson. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B, 27, B63(2010).

    [7] M. N. Zervas, C. A. Codemard. High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron., 20, 219(2014).

    [8] P. Zhou, L. Huang, J. Xu, P. Ma, R. Su, J. Wu, Z. Liu. High power linearly polarized fiber laser: generation, manipulation and application. Sci. China Technol. Sci., 60, 1784(2017).

    [9]

    [10] . Advanced metal processing–high-power fiber lasers with rogrammable beam technology.

    [11]

    [12] D. Mao, Y. Zheng, C. Zeng, H. Lu, C. Wang, H. Zhang, W. Zhang, T. Mei, J. Zhao. Generation of polarization and phase singular beams in fibers and fiber lasers. Adv. Photonics, 3, 014002(2021).

    [13] J. M. O. Daniel, W. A. Clarkson. Rapid, electronically controllable transverse mode selection in a multimode fiber laser. Opt. Express, 21, 29442(2013).

    [14] X. Heng, J. Gan, Z. Zhang, J. Li, M. Li, H. Zhao, Q. Qian, S. Xu, Z. Yang. Transverse mode switchable all-fiber Brillouin laser. Opt. Lett., 43, 4172(2018).

    [15] N. Wang, J. C. Alvarado-Zacarias, M. S. Habib, H. Wen, J. E. Antonio-Lopez, P. Sillard, A. Amezcua-Correa, A. Schülzgen, R. Amezcua-Correa, G. Li. Mode-selective few-mode Brillouin fiber lasers based on intramodal and intermodal SBS. Opt. Lett., 45, 2323(2020).

    [16] Y. Cai, J. Wang, J. Zhang, H. Wan, Z. Zhang, L. Zhang. Generation of cylindrical vector beams in a mode-locked fiber laser using a mode-selective coupler. Chin. Opt. Lett., 16, 010602(2018).

    [17] T. Wang, A. Yang, F. Shi, Y. Huang, J. Wen, X. Zeng. High-order mode lasing in all-FMF laser cavities. Photonics Res., 7, 42(2018).

    [18] J. Lu, L. Meng, F. Shi, X. Liu, Z. Luo, P. Yan, L. Huang, F. Pang, T. Wang, X. Zeng, P. Zhou. Dynamic mode-switchable optical vortex beams using acousto-optic mode converter. Opt. Lett., 43, 5841(2018).

    [19] K. Wei, W. Zhang, L. Huang, D. Mao, F. Gao, T. Mei, J. Zhao. Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions. Opt. Express, 25, 2733(2017).

    [20] W. Zhang, K. Wei, H. Wang, D. Mao, F. Gao, L. Huang, T. Mei, J. Zhao. Tunable-wavelength picosecond vortex generation in fiber and its application in frequency-doubled vortex. J. Opt., 20, 014004(2017).

    [21] W. Zhang, L. Zhang, C. Meng, F. Gao. Generation of nanosecond cylindrical vector beams in two-mode fiber and its applications of stimulated Raman scattering. Chin. Opt. Lett., 19, 010603(2021).

    [22] R. Su, B. Yang, X. Xi, P. Zhou, X. Wang, Y. Ma, X. Xu, J. Chen. 500 W level MOPA laser with switchable output modes based on active control. Opt. Express, 25, 23275(2017).

    [23] Y. You, G. Bai, X. Zou, X. Li, M. Su, H. Wang, Z. Quan, M. Liu, J. Zhang, Q. Li, H. Shen, Y. Qi, B. He, J. Zhou. A 1.4-kW mode-controllable fiber laser system. J. Lightwave Technol., 39, 2536(2021).

    [24] X. Du, H. Zhang, P. Ma, X. Wang, P. Zhou, Z. Liu. Spatial mode switchable fiber laser based on FM-FBG and random distributed feedback. Laser Phys., 25, 095102(2015).

    [25] Y. Cai, Z. Wang, H. Wan, Z. Zhang, L. Zhang. Mode and wavelength-switchable pulsed fiber laser with few-mode fiber grating. IEEE Photonics Technol. Lett., 31, 1155(2019).

    [26] B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, Q. Zhan. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating. Opt. Lett., 37, 464(2012).

    [27] L. Huang, J. Leng, P. Zhou, S. Guo, H. Lu, X. Cheng. Adaptive mode control of a few-mode fiber by real-time mode decomposition. Opt. Express, 23, 28082(2015).

    [28] D. Lin, J. Carpenter, Y. Feng, S. Jain, Y. Jung, Y. Feng, M. N. Zervas, D. J. Richardson. Reconfigurable structured light generation in a multicore fibre amplifier. Nat. Commun., 11, 3986(2020).

    [29] J. Song, H. Xu, H. Wu, J. Ye, J. Xu, L. Huang, J. Leng, P. Zhou. All-fiberized transverse mode-switching method based on temperature control. Appl. Opt., 58, 3696(2019).

    [30] C. Jocher, C. Jauregui, M. Becker, M. Rothhardt, J. Limpert, A. Tünnermann. An all-fiber Raman laser for cylindrical vector beam generation. Laser Phys. Lett., 10, 125108(2013).

    [31] J. Lv, H. Li, Y. Zhang, R. Tao, Z. Dong, C. Gu, P. Yao, Y. Zhu, W. Chen, Q. Zhan, L. Xu. Few-mode random fiber laser with a switchable oscillating spatial mode. Opt. Express, 28, 38973(2020).

    [32] H. Wu, J. Lu, L. Huang, X. Zeng, P. Zhou. All-fiber laser with agile mode-switching capability through intra-cavity conversion. IEEE Photonics J., 12, 1500709(2020).

    [33] K. O. Hill, G. Meltz. Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol., 15, 1263(1997).

    [34] K. J. Lee, I.-K. Hwang, H. C. Park, B. Y. Kim. Axial strain dependence of all-fiber acousto-optic tunable filters. Opt. Express, 17, 2348(2009).

    [35] P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, Z. Liu. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression. High Power Laser Sci. Eng., 6, e57(2018).

    [36] L. Xie, C. Zhang, Y. Liu, H. Li, Q. Chu, H. Song, W. Wu, B. Shen, M. Li, X. Feng, S. Huang, R. Tao, J. Wang, X. Zhang, H. Zhu. Experimental investigation of quasi-static mode degradation in a high power large mode area fiber amplifier. Opt. Express, 29, 7986(2021).

    [37] H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, A. Tünnermann. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector. Opt. Express, 21, 17285(2013).

    Data from CrossRef

    [1] Hehe Dong, Yinggang Chen, Yan Jiao, Qinling Zhou, Yue Cheng, Hui Zhang, Yujie Lu, Shikai Wang, Chunlei Yu, Lili Hu. Nanocrystalline Yb:YAG-Doped Silica Glass with Good Transmittance and Significant Spectral Performance Enhancements. Nanomaterials, 12, 1263(2022).

    Hanshuo Wu, Jiangtao Xu, Liangjin Huang, Xianglong Zeng, Pu Zhou. High-power fiber laser with real-time mode switchability[J]. Chinese Optics Letters, 2022, 20(2): 021402
    Download Citation