• Microelectronics
  • Vol. 52, Issue 3, 351 (2022)
XU Zicheng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.220071 Cite this Article
    XU Zicheng. Research Progress of Terahertz Technology for Wireless Communication Applications[J]. Microelectronics, 2022, 52(3): 351 Copy Citation Text show less
    References

    [1] Cisco visual networking index: forecast and trends 2017-2022 [R]. 2018.

    [2] CHERRY S. Edholm’s law of bandwidth [J]. IEEE Spectrum, 2004, 41(7): 58-60.

    [3] Towards a new internet for the year 2030 and beyond [R]. Huawei Technologies, 2020.

    [4] Terahertz radiation [Z]. Wikipedia, 2022.

    [5] RAJESH U. DARPA thrust in terahertz electronics for future military wireless and sensing [R]. Int Defense Security & Technol Inc., 2021-01-22.

    [6] ELAYAN H,AMIN O,SHIHADA B, et al. Terahertz band: the last piece of RF spectrum puzzle for communication systems [J]. IEEE Open J Commun Soc, 2020(1): 1-32.

    [7] FEDERICI J, MOELLER L. Review of terahertz and subterahertz wireless communications [J]. J Appl Phys, 2010(107): 111101.

    [8] SIEGEL P H. Terahertz technology in biology and medicine [J]. IEEE Trans Microwave Theo & Techn, 2004, 52(10): 2438-2447.

    [9] MOLDOVAN A, RUDER M A, AKYILDIZ I F, et al. LOS and NLOS channel modeling for terahertz wireless communication with scattered rays [C]// IEEE Globecom Workshops. 2014: 388-392.

    [10] ELAYAN H, AMIN O, SHUBAIR R M, et al.. Terahertz communication: the opportunities of wireless technology beyond 5G [C]// IEEE Int Conf Comm Net. Marrakech,Morocco. 2018: 1-5.

    [11] AKYILDIZ I F, JORNET J M, HAN C. Terahertz band: next frontier for wireless communications [J]. Phys Commun, 2014, 12(4): 16-32.

    [12] LIN C, LI G Y L. Terahertz communications: an array-of-subarrays solution [J]. IEEE Commun Mag, 2016, 54(12): 124-131.

    [13] LIEBE H J. MPM - an atmospheric millimeter-wave propagation model [J]. Int J Infrar Milli Waves, 1989, 10: 631-650.

    [14] PARDO J R, CERNICHARO J, SERABYN E. Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications [J]. IEEE Trans Anten & Propagat, 2001, 49(12): 1683-1694.

    [15] SCOTT P. The am atmospheric model [Z]. 2012.

    [16] JORNET J M, AKYILDIZ I F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band [J]. IEEE Trans Wireless Commun, 2011, 10(10): 3211-3221.

    [17] YANG Y, SHUTLER A, GRISCHKOWSKY D. Measurement of the transmission of the atmosphere from 02 to 2 THz [J]. Opti Expre, 2011, 19(9): 8830.

    [18] YANG Y, MANDEHGAR M, GRISCHKOWSKY D. Determination of the water vapor continuum absorption by THz-TDS and molecular response theory [J]. Opti Expr, 2014, 22(4): 4388.

    [19] GORDON I E, ROTHMAN L S, HILL C, et al. The HITRAN2016 molecular spectroscopic database [J]. J Quantitat Spectros & Radiat Transfer, 2017(203): 63-69.

    [20] KOKKONIEMI J, BOULOGEORGOS A A, AMINU M, et al. Impact of beam misalignment on THz wireless systems [J]. Nano Communication Networks, 2020, 24: 100302.

    [21] Terahertz gap [Z]. Wikipedia, 2022.

    [22] SHAO H, KEYVANINIA S, VANWOLLEGHEM M, et al. Heterogeneously integrated III-V/silicon dual-mode distributed feedback laser array for terahertz generation [J]. Opti Lett, 2014, 39(22): 6403-6406.

    [23] XUE X, ZHENG X, ZHOU B. Super-efficient temporal solitons in mutually coupled optical cavities [J]. Nature Photon, 2019, 13(9): 616-622.

    [24] WANG S, LU Z, LI W, et al. 26.8-m THz wireless transmission of probabilistic shaping 16-QAM-OFDM signals [J]. APL photon, 2020, 5(5): 9.

    [25] HARTER T, FLLNER C, KEMAL J N, et al. Generalized Kramers-Kronig receiver for coherent terahertz communications [J]. Nature photon, 2020, 14(10): 1-6.

    [26] JIA S, PANG X, OZOLINS O, et al. 04 THz photonic-wireless link with 106 Gbit/s single channel bitrate [J]. J Lightwave Technol, 2018, 36(2): 610-616.

    [27] LIANG G, LIU T, WANG Q J. Recent developments of terahertz quantum cascade lasers [J]. IEEE J Select Top Quant Elec, 2017, 23(4): 1-18.

    [28] STOHR A, JDGER D. Photonic millimeter-wave and terahertz source technologies [C]// Int Top Meet Microwave Photon. 2006 : 1-4.

    [29] SHUMYATSKY P, ALFANO R R. Terahertz sources [J]. J Biomed Opti, 2011, 16(3): 033001.

    [30] HEBLING J, YEH K L, HOFFMANN M C, et al. High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy [J]. IEEE J Select Top Quant Elec, 2008, 14(2): 345-353.

    [33] ZHONG Q, CHEN Z, SHARMA N, et al. 300-GHz CMOS QPSK transmitter for 30-Gbps dielectric waveguide communication [C]// IEEE CICC. 2018: 1-4.

    [34] LEE S, HARA S, YOSHIDA T, et al. An 80-Gb/s 300-GHz-band single-chip CMOS transceiver [J]. IEEE J Sol Sta Circ, 2019, 54(12): 3577-3588.

    [35] KANG S, THYAGARAJAN S V, NIKNEJAD A M. A 240 GHz fully integrated wideband QPSK transmitter in 65 nm CMOS [J]. IEEE J Sol Sta Circ, 2015, 50(10): 2256-2267.

    [36] THYAGARAJAN S V, KANG S, NIKNEJAD A M. A 240 GHz fully integrated wideband QPSK receiver in 65 nm CMOS [J]. IEEE J Sol Sta Circ, 2015, 50(10): 2268-2280.

    [37] SONG H J, KIM J Y, AJITO K, et al. 50-Gb/s direct conversion QPSK modulator and demodulator MMICs for terahertz communications at 300 GHz [J]. IEEE Trans Microwave Theo & Tech, 2014, 62(3): 600-609.

    [38] SCHMID R L, ULUSOY A C, ZEINOLABEDINZADEH S, et al. A comparison of the degradation in RF performance due to device interconnects in advanced SiGe HBT and CMOS technologies [J]. IEEE Trans Elec Dev, 2015, 62(6): 1803-1810.

    [39] YAU K, DACQUAY E, SARKAS I, et al. Device and IC characterization above 100 GHz [J]. IEEE Microwave Mag, 2012, 13(1): 30-54.

    [40] MEI X, YOSHIDA W, LANGE M, et al. First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process [J]. IEEE Elec Dev Lett, 2015, 36(4): 327-329.

    [41] POPOVIC Z. Amping up the PA for 5G: efficient GaN power amplifiers with dynamic supplies [J]. IEEE Microwave Mag, 2017, 18(3): 137-149.

    [42] LACHNER R. Towards 07 terahertz silicon germanium heterojunction bipolar technology -the DOTSEVEN project [J]. ECS Trans, 2014, 64(6): 21-37.

    [43] SCHROTER M, ROSENBAUM T, CHEVALIER P, et al. SiGe HBT technology: future trends and TCAD-based roadmap [J]. Proceed IEEE, 2017, 105(6): 1068-1086.

    [44] DALY D C, FUJINO L C, SMITH K C. Trends in solid-state circuits from the 65th ISSCC [J]. IEEE Sol Sta Circ Mag, 2018, 10(1): 30-46.

    [45] NAGATSUMA T, DUCOURNAU G, RENAUD C C. Advances in terahertz communications accelerated by photonics [J]. Nature Photon, 2016, 10(6): 371-379.

    [46] CARPINTERO G, HISATAKE S, DE FELIPE D, et al. Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit [J]. Scientif Rep, 2018, 8(1): 3018.

    [47] WAKATSUKI A, MURAMOTO Y, ISHIBASHI T. Development of terahertz-wave photomixer module using a uni-traveling-carrier photodiode [J]. NTT Tech Rev, 2012, 10(2): 1-7.

    [48] ISHIBASHI T, SHIMIZU N, KODAMA S, et al. Uni-traveling-carrier photodiodes [J]. Ultrafast Elec & Optoelec, 1997, 13: 83-87.

    [49] KOENIG S, LOPEZ-DIAZ D, ANTES J, et al. Wireless sub-THz communication system with high data rate [J]. Nature Photon, 2013, 7(12): 977-981.

    [50] ZENG Y, ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles: opportunities and challenges [J]. IEEE Commun Mag, 2016, 54(5): 36-42.

    [51] WANG Q, CHEN Z, LI H. Energy-efficient trajectory planning for UAV-aided secure communication [J]. China Commun, 2018, 15(5): 51-60.

    [52] FEDERICI J F, MOELLER L, SU K. Terahertz wireless communications [R]. Handbook of Terahertz Technology for Imaging, Sensing and Communications. 2013: 156-214.

    [53] MOLLAHASANI S, ONUR E. Evaluation of terahertz channel in data centers [C]// IEEE/IFIP NOMS. 2016: 727-730.

    [54] DONG S W, ZHU Z, WANG Y. Advances of terahertz research and terahertz satellite communications [C]// ICECC.2011: 4122-4125.

    [55] HWU S U, DESILVA K B, JIH C T. Terahertz (THz) wireless systems for space applications [C]// IEEE Sensor Appl Symp Proceed. 2013: 171-175.

    [56] SHAIK K S, HEMMATI H. Wavelength selection criteria for laser communications [C]// Proceed SPIE. 1995.

    [57] FEDERICI J F, MA J. Comparison of terahertz versus infrared free-space communications under identical weather conditions [C]// 39th IRMMW-THz. 2014: 1-3.

    XU Zicheng. Research Progress of Terahertz Technology for Wireless Communication Applications[J]. Microelectronics, 2022, 52(3): 351
    Download Citation