• Journal of Inorganic Materials
  • Vol. 37, Issue 12, 1295 (2022)
Hongjian HAO*, Haiyan LI, Detian WAN, Yiwang BAO, and Yueming LI
DOI: 10.15541/jim20220238 Cite this Article
Hongjian HAO, Haiyan LI, Detian WAN, Yiwang BAO, Yueming LI. Enhanced Flexural Strength and Thermal Shock Resistance of Alumina Ceramics by Mullite/Alumina Pre-stressed Coating[J]. Journal of Inorganic Materials, 2022, 37(12): 1295 Copy Citation Text show less
References

[1] J H NIELSEN, K THIELE, J SCHNEIDER et al. Compressive zone depth of thermally tempered glass. Construction and Building Materials, 125238(2021). https://linkinghub.elsevier.com/retrieve/pii/S0950061821029809

[2] D J GREEN. Crack arrest and multiple cracking in glass through the use of designed residual stress profiles. Science, 1295-1297(1999).

[3] R BERMEJO, Y TORRES, A J SÁNCHEZ-HERENCIA et al. Residual stresses, strength and toughness of laminates with different layer thickness ratios. Acta Materialia, 4745-4757(2006). https://linkinghub.elsevier.com/retrieve/pii/S1359645406004290

[4] R BERMEJO, J PASCUAL, T LUBE et al. Optimal strength and toughness of Al2O3-ZrO2 laminates designed with external or internal compressive layers. Journal of the European Ceramic Society, 1575-1583(2008). https://linkinghub.elsevier.com/retrieve/pii/S095522190700581X

[5] R LAKSHMINARAYANAN, D SHETTY, R A CUTLER. Toughening of layered ceramic composites with residual surface compression. Journal of the American Ceramic Society, 79-87(1996). https://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1996.tb07883.x

[6] Y W BAO, F H KUANG, Y SUN et al. A simple way to make pre-stressed ceramics with high strength. Journal of Materiomics, 657-662(2019).

[7] H Y LI, H J HAO, Y TIAN et al. Effects of residual stresses on strength and crack resistance in ZrO2 ceramics with alumina coating. Journal of Inorganic Materials, 467-472(2022). http://www.jim.org.cn/EN/10.15541/jim20210412

[8] Y W BAO, Y SUN, F H KUANG et al. Development and prospects of high strength pre-stressed ceramics. Journal of Inorganic Materials, 399-408(2020).

[9] N LI, X Y ZHANG, Y N QU et al. A simple and efficient way to prepare porous mullite matrix ceramics via directly sintering SiO2- Al2O3 microspheres. Journal of the European Ceramic Society, 2807-2812(2016). https://linkinghub.elsevier.com/retrieve/pii/S0955221916301649

[10] H LI, Y S LIU, Y S LIU et al. Silica strengthened alumina ceramic cores prepared by 3D printing. Journal of the European Ceramic Society, 2938-2947(2021). https://linkinghub.elsevier.com/retrieve/pii/S0955221920309602

[11] Y M LIN, C W LI, C A WANG. Effects of mullite content on the properties and microstructure of porous anorthite/mullite composite ceramics. Journal of Inorganic Materials, 1095-1100(2011).

[12] Y JIANG, L F CHANG, H Q RU et al. Microstructure and oxidation behaviors of dense mullite-silicon carbide-silicon coating for graphite fabricated by dipping-pyrolysis and reactive infiltration. Surface and Coatings Technology, 410-418(2018). https://linkinghub.elsevier.com/retrieve/pii/S0257897218307400

[14] X ZHOU, D LIU, H L BU et al. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: a critical review. Solid Earth Sciences, 16-29(2018). https://linkinghub.elsevier.com/retrieve/pii/S2451912X17300703

[15] Y W BAO, S B SU, J L HUANG. An uneven strain model for analysis of residual stress and interface stress in laminate composites. Journal of Composite Materials, 1769-1778(2002). http://journals.sagepub.com/doi/10.1177/0021998302036014173

[16] P Z CAI, D J GREEN, G L MESSING. Constrained densification of alumina/zirconia hybrid laminates, II: viscoelastic stress computation. Journal of the American Ceramic Society, 1948-1949(1997).

[17] R JIANG, X SUN, H T LIU et al. Microstructure and mechanical properties improvement of the Nextel™ 610 fiber reinforced alumina composite. Journal of the European Ceramic Society, 5394-5399(2021). https://linkinghub.elsevier.com/retrieve/pii/S0955221921002843

[18] W PABST, E GREGOROVÁ, M ČERNÝ. Isothermal and adiabatic Young's modulus of alumina and zirconia ceramics at elevated temperatures. Journal of the European Ceramic Society, 3085-3093(2013). https://linkinghub.elsevier.com/retrieve/pii/S0955221913003129

[19] W WANG, Z SHI, Z WANG et al. Phase transformation and properties of high-quality mullite ceramics synthesized using desert drift sands as raw materials. Materials Letters, 271-274(2018). https://linkinghub.elsevier.com/retrieve/pii/S0167577X18305342

[20] C G WEI, Z LIU, Y W BAO et al. Evaluating thermal expansion coefficient and density of ceramic coatings by relative method. Materials Letters, 542-544(2015). https://linkinghub.elsevier.com/retrieve/pii/S0167577X15305425

[21] Y W BAO, Y C ZHOU, X X BU et al. Evaluating elastic modulus and strength of hard coatings by relative method. Materials Science and Engineering: A, 268-274(2007). https://linkinghub.elsevier.com/retrieve/pii/S0921509307000147

[22] P Z CAI, D J GREEN, G L MESSING. Constrained densification of alumina/zirconia hybrid laminates, I: experimental observations of processing defects. Journal of the American Ceramic Society, 1929-1939(1997). https://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1997.tb03075.x

Hongjian HAO, Haiyan LI, Detian WAN, Yiwang BAO, Yueming LI. Enhanced Flexural Strength and Thermal Shock Resistance of Alumina Ceramics by Mullite/Alumina Pre-stressed Coating[J]. Journal of Inorganic Materials, 2022, 37(12): 1295
Download Citation