• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 4, 583 (2022)
Aoxiang ZHANG1、*, Yao WANG1, Mengzhen WANG1, Shiqin WEI1, Fang WANG1、2, and Yuhuai LIU1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2022.04.013 Cite this Article
    ZHANG Aoxiang, WANG Yao, WANG Mengzhen, WEI Shiqin, WANG Fang, LIU Yuhuai. Performance optimization of AlGaN-based deep ultraviolet laser diode with M-shaped hole barrier structure[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 583 Copy Citation Text show less
    References

    [1] Kneissl M, Seong T Y, Han J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies [J]. Nature Photonics, 2019, 13(4): 233-244.

    [2] Li W M, Chang X H. Application of UVLED in prevention and control of bacterial pollution in water purifier [J]. Journal of Appliance Science & Technology, 2020, 2: 32-35.

    [3] Yang C. Study on Ultraviolet Disinfection for Drinking Water Based on Bacterial Viability and Culturability Assessment [D]. Beijing: Tsinghua University, 2019.

    [4] Song K, Mohseni M, Taghipour F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review [J]. Water Research, 2016, 94: 341-349.

    [5] Yeh N G, Wu C H, Cheng T C. Light-emitting diodes-Their potential in biomedical applications [J]. Renewable and Sustainable Energy Reviews, 2010, 14(8): 2161-2166.

    [6] Mondal R K, Chatterjee V, Singh S, et al. Optimization of structure parameters for highly efficient AlGaN based deep ultraviolet light emitting diodes [J]. Superlattices and Microstructures, 2017, 112: 339-352.

    [7] Hadi J, Dunowska M, Wu S Y, et al. Control measures for SARS-CoV-2: A review on light-based inactivation of single-stranded RNA viruses [J]. Pathogens, 2020, 9: 737.

    [8] Lin Y, Chen H S, Chen C H, et al. Progress inthedeep-ultraviolet light-emitting diode and its application on sterilization and disinfection [J]. Journal of Xiamen University (Natural Science), 2020, 59(3): 360-372.

    [9] Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode [J]. Applied Physics Letters, 2008, 93(24): 241106.

    [10] Sato K, Yasue S, Ogino Y, et al. Analysis of spontaneous subpeak emission from the guide layers of the ultraviolet-B laser diode structure containing composition-graded p-AlGaN cladding layers [J]. Physica Status Solidi (a), 2020, 217(14): 1900864.

    [11] Satter M M, Lochner Z, Ryou J H, et al. Polarization matching in AlGaN-based multiple-quantum-well deep ultraviolet laser diodes on AlN substrates using quaternary AlInGaN barriers [J]. Journal of Lightwave Technology, 2012, 30(18): 3017-3025.

    [12] Yang W, Li D, He J, et al. Advantage of tapered and graded AlGaN electron blocking layer in InGaN-based blue laser diodes [J]. Physica Status Solidi C, 2013, 10(3): 346-349.

    [13] Mondal R K, Chatterjee V, Pal S. Effect of step-graded superlattice electron blocking layer on performance of AlGaN based deep-UV light emitting diodes [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108: 233-237.

    [14] Zhang D Q, Li G B, Chen C S. Relationship between barrier height of single quantum well InGaN/GaN and LED photoelectric performance [J]. Chinese Journal of Quantum Electronics, 2014, 31(1): 107-115.

    [15] Choi R J, Shim H W, Jeong S M, et al. Triangular quantum well of InGaN-GaN for active layer of light-emitting device [J]. Physica Status Solidi (a), 2002, 192(2): 430-434.

    [16] Sharif M N, Niass M I, Liou J J, et al. The effects of AlGaN quantum barriers on carrier flow in deep ultraviolet nanowire laser diode [J]. Semiconductor Science and Technology, 2021, 36(5): 055017.

    [17] Martens M, Kuhn C, Ziffer E, et al. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes [J]. Applied Physics Letters, 2016, 108(15): 151108.

    [18] Chong F, Wang J, Xiong C, et al. Optimum the thickness of p-waveguide layer for high conversion efficiency diode lasers [J]. Acta Optica Sinica, 2009, 29(12): 3419-3423.

    [19] Yao H L, Lu G, Song L J, et al. Performance improvement of LED photoelectric devices [J]. Chinese Journal of Quantum Electronics, 2016, 33(3): 301-305.

    [20] Tian K K, Chu C S, Bi W G, et al. Hole injection efficiency improvement for AlGaN-based deep ultraviolet light-emitting diodes [J]. Laser & Optoelectronics Progress, 2019, 56(6): 060001.

    [21] Shih Y H, Chang J Y, Sheu J K, et al. Design of hole-blocking and electron-blocking layers in AlxGa1-xN-based UV light-emitting diodes [J]. IEEE Transactions on Electron Devices, 2016, 63(3): 1141-1147.

    [22] Zhang Y H, Lv Q J, Zheng C D, et al. Recombination pathways and hole leakage behavior in InGaN/GaN multiple quantum wells with V-shaped pits [J]. Superlattices and Microstructures, 2019, 136: 106284.

    [23] Kuo Y K, Chen F M, Chang J Y, et al. Design and optimization of electron-blocking layer in deep ultraviolet light-emitting diodes [J]. IEEE Journal of Quantum Electronics, 2020, 56(1): 3300206.

    [24] Yi X Y, Sun H Q, Sun J, et al. High efficiency improvements in AlGaN-based ultraviolet light-emitting diodes with specially designed AlGaN superlattice hole and electron blocking layers [J]. Superlattices and Microstructures, 2017, 104: 19-23.

    [25] Wang H, Yu J S, Li L, et al. Effect of BCP layer on organic light-emitting devices performance [J]. Journal of Optoelectronics · Laser, 2008, 19(11): 1429-1432.

    [26] Rostampour E. Effect of position-dependent effective mass on electron tunneling of InAs/GaSb type-II superlattice having triangular and parabolic geometries [J]. Optics & Laser Technology, 2021, 138(551): 106840.

    [27] Shi H Z, Gu H M, Li J H, et al. Performance improvements of AlGaN-based deep-ultraviolet light-emitting diodes with specifically designed irregular sawtooth hole and electron blocking layers [J]. Optics Communications, 2019, 441(15): 149-154.

    [28] Zhang C, Sun H Q, Li X N, et al. Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with double electron blocking layers [J]. Chinese Physics B, 2016, 25(2): 028501.

    [29] Ding B B, Zhao F, Song J J, et al. Performance improvement of blue InGaN light-emitting diodes with a specially designed n-AlGaN hole blocking layer [J]. Chinese Physics B, 2013, 22(8): 088503.

    [30] Singha C, Sen S, Das A, et al. GaN/AlN multiple quantum wells grown by molecular beam epitaxy: Effect of growth kinetics on radiative recombination efficiency [J]. Thin Solid Films, 2020, 709: 138216.

    [31] Xing Z Q, Zhou Y J, Chen X, et al. Increased radiative recombination of AlGaN-based deep ultraviolet laser diodes with convex quantum wells [J]. Optoelectronics Letters, 2020, 16(2): 87-91.

    [32] Wu F, Dai J N, Chen C Q. Research progress of AlGaN based deep ultraviolet light emitting diodes [J]. Journal of Synthetic Crystals, 2020, 49(11): 2079-2097.

    [33] Zhang Y, Yang C A, Shang J M, et al. Research progress of semiconductor interband cascade lasers [J]. Acta Optica Sinica, 2021, 41(1): 232-248.

    [34] Huang J Y, Shang L, Ma S F, et al. Research progress on impact factors to output power of semiconductor laser [J]. Materials China, 2021, 40(3): 218-224.

    [35] Yi X Y, Sun H Q, Li Z F, et al. [INVITED] Special AlGaN graded superlattice hole and electron blocking layers improved performance of AlGaN-based ultraviolet light-emitting diodes [J]. Optics & Laser Technology, 2018, 106: 469-473.

    ZHANG Aoxiang, WANG Yao, WANG Mengzhen, WEI Shiqin, WANG Fang, LIU Yuhuai. Performance optimization of AlGaN-based deep ultraviolet laser diode with M-shaped hole barrier structure[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 583
    Download Citation