• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101015 (2022)
Yu Lin1、2, Minqiu Liu1, Deqin Ouyang1、2、*, Kefeng Xiao3, Yewang Chen1、2, Qitao Lü1、2, and Shuangchen Ruan1、2
Author Affiliations
  • 1Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
  • 2Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
  • 3Shenzhen People’s Hospital, Shenzhen, Guangdong 518020, China
  • show less
    DOI: 10.3788/CJL202249.0101015 Cite this Article Set citation alerts
    Yu Lin, Minqiu Liu, Deqin Ouyang, Kefeng Xiao, Yewang Chen, Qitao Lü, Shuangchen Ruan. Exploration of Thulium-Doped Fiber Lasers in Lithotripsy in vitro[J]. Chinese Journal of Lasers, 2022, 49(1): 0101015 Copy Citation Text show less
    References

    [1] Fried N M, Irby P B. Advances in laser technology and fibre-optic delivery systems in lithotripsy[J]. Nature Reviews Urology, 15, 563-573(2018).

    [2] Liang H, Liang L, Yu Y et al. Thermal effect of holmium laser during ureteroscopic lithotripsy[J]. BMC Urology, 20, 69(2020).

    [3] Lee H, Kang H W, Teichman J M et al. Urinary calculus fragmentation during Ho∶YAG and Er∶YAG lithotripsy[J]. Lasers in Surgery and Medicine, 38, 39-51(2006).

    [4] Qiu J Z, Teichman J, Wang T Y et al. Comparison of fluoride and sapphire optical fibers for Er∶YAG laser lithotripsy[J]. Journal of Biophotonics, 3, 277-283(2010).

    [5] Zhang J J, Rajabhandharaks D, Xuan J R et al. Water content contribution in calculus phantom ablation during Q-switched Tm∶YAG laser lithotripsy[J]. Journal of Biomedical Optics, 20, 128001(2015).

    [6] Kamal W, Kallidonis P, Koukiou G et al. Stone retropulsion with Ho∶YAG and Tm∶YAG lasers: a clinical practice-oriented experimental study[J]. Journal of Endourology, 30, 1145-1149(2016).

    [7] Fried N M. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-Watt thulium fiber laser at 1.94 μm[J]. Lasers in Surgery and Medicine, 37, 53-58(2005).

    [8] Scott N J, Cilip C M, Fried N M. Thulium fiber laser ablation of urinary stones through small-core optical fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 435-440(2009).

    [9] Wilson C R, Hutchens T C, Hardy L A et al. A miniaturized, 1.9F integrated optical fiber and stone basket for use in thulium fiber laser lithotripsy[J]. Journal of Endourology, 29, 1110-1114(2015).

    [10] Hardy L A, Vinnichenko V, Fried N M. High power holmium∶YAG versus thulium fiber laser treatment of kidney stones in dusting mode: ablation rate and fragment size studies[J]. Lasers in Surgery and Medicine, 51, 522-530(2019).

    [11] Andreeva V, Vinarov A, Yaroslavsky I et al. Preclinical comparison of superpulse thulium fiber laser and a holmium∶YAG laser for lithotripsy[J]. World Journal of Urology, 38, 497-503(2020).

    [12] Ellison J S, MacConaghy B, Hall T L et al. A simulated model for fluid and tissue heating during pediatric laser lithotripsy[J]. Journal of Pediatric Urology, 16, 626.e1-626.e8(2020).

    [13] Molina W R, Carrera R V, Chew B H et al. Temperature rise during ureteral laser lithotripsy: comparison of super pulse thulium fiber laser (SPTF) vs high power 120 W holmium-YAG laser (Ho∶YAG)[J]. World Journal of Urology, 39, 3951-3956(2021).

    [14] Keller EX, de Coninck V, Doizi S et al. Thulium fiber laser: ready to dust all urinary stone composition types?[J]. World Journal of Urology, 39, 1693-1698(2021).

    [15] Huo Y F. Clinical effects of 2-micron radon laser treatment complex urinary system stones[J]. Health for Everyone, 89(2020).

    [16] Liao G Y. Clinical efficacy of percutaneous renal mirror laser gravel treatment of renal diverticulum stones[J]. Laboratory Medicine and Clinic, 15, 2959-2960(2018).

    [17] Sun F, Zhai Y Z, Chen B C et al. Efficacy and safety of combined application of flexible cystoscopy and thulium laser in standard percutaneous nephrolithotomy for complex renal calculi[J]. Chinese Journal of Laser Medicine & Surgery, 26, 181-184(2017).

    [18] Lindau O, Lauterborn W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall[J]. Journal of Fluid Mechanics, 479, 327-348(2003).

    [19] Sperrin M, Rogers K. Determination of the shock wave intensity from a laser lithotriptor using a bi-laminar hydrophone[C](1999).

    [20] Lekarev V, Dymov A, Vinarov A et al. Mechanism of lithotripsy by superpulse thulium fiber laser and its clinical efficiency[J]. Applied Sciences, 10, 7480(2020).

    [21] Ye X[D]. The mechanism and key technology of thulium laser lithotripsy(2020).

    [22] Traxer O, Keller E X. Thulium fiber laser: the new player for kidney stone treatment? A comparison with holmium∶YAG laser[J]. World Journal of Urology, 38, 1883-1894(2020).

    [23] Hardy L A[D]. Improving thulium fiber laser lithotripsy efficiency, 4-6(2018).

    [24] Huang C Y, Liu L, Li Z J. Advances in the application and mechanism of laser lithotripsy[J]. Chinese Journal of Laser Medicine & Surgery, 14, 390-393(2005).

    Yu Lin, Minqiu Liu, Deqin Ouyang, Kefeng Xiao, Yewang Chen, Qitao Lü, Shuangchen Ruan. Exploration of Thulium-Doped Fiber Lasers in Lithotripsy in vitro[J]. Chinese Journal of Lasers, 2022, 49(1): 0101015
    Download Citation