• Laser & Optoelectronics Progress
  • Vol. 52, Issue 10, 102301 (2015)
Liu Yadong*, Tian Jie, Song Xinchao, Li Jichao, and Zhang Qian
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.102301 Cite this Article Set citation alerts
    Liu Yadong, Tian Jie, Song Xinchao, Li Jichao, Zhang Qian. Applications of Combination Hole Injection Layer in Blue OLED[J]. Laser & Optoelectronics Progress, 2015, 52(10): 102301 Copy Citation Text show less
    References

    [1] Tang C W, Slyke S A V. Organic electroluminescent diodes[J]. Appl Phys Lett, 1987, 51(12): 913.

    [2] Park Y, Kim B, Lee C, et al.. Highly efficient new hole injection materials for OLEDs based on dimeric phenothiazine and phenoxazine derivatives[J]. J Phys Chem C, 2011, 115(11): 4843-4850.

    [3] Wang H, Klubek K P, Tang C W. Current efficiency in organic light-emitting diodes with a hole-injection layer[J]. Appl Phys Lett, 2008, 93(9): 093306.

    [4] Li L S, Guan M, Cao G H, et al.. Low operating-voltage and high power-efficiency OLED employing MoO3-doped CuPc as hole injection layer[J]. Displays, 2012, 33(1): 17-20.

    [5] Chen S F, Wang C W. Influence of the hole injection layer on the luminescent performance of organic light-emitting diodes[J]. Appl Phys Lett, 2004, 85(5): 765-767.

    [6] Hung L S, Zheng L R, Mason M G. Anode modification in organic light-emitting diodes by low-frequency plasma polymerization of CHF3[J]. Appl Phys Lett, 2001, 78(5): 673.

    [7] Cho I, Kim S H, Kim J H, et al.. Highly efficient and stable deep-blue emitting anthracene-derived molecular glass for versatile types of non-doped OLED applications[J]. J Mater Chem, 2012, 22(1): 123-129.

    [8] Wang F X, Qiao X F, Xiong T, et al.. The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes[J]. Organic Electronics, 2008, 9(6): 985-993.

    [9] Lee J, Lee J I, Lee J Y, et al.. Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic lightemitting diodes with a mixed host structure[J]. Appl Phys Lett, 2009, 94(19): 193305.

    [10] Koh T, Choi J, Lee S, et al.. Optical outcoupling enhancement in organic light-emitting diodes: Highly conductive polymer as a low-index layer on microstructured ITO electrodes[J]. Adv Mater, 2010, 22(16): 1849-1853.

    [11] Slyke S A V, Chen C H, Tang C W. Organic electroluminescent devices with improved stability[J]. Appl Phys Lett, 1996, 69(15): 2160.

    [12] Yook K S, Chin B D, Lee J Y, et al.. Vertical orientation of copper phthalocyanine in organic solar cells using a small molecular weight organic templating layer[J]. Appl Phys Lett, 2011, 99(4): 043308.

    [13] Park S M, Kim Y H, Yi Y, et al.. Insertion of an organic interlayer for hole current enhancement in inverted organic light emitting devices[J]. Appl Phys Lett, 2010, 97(6): 063308.

    [14] Shi J M, Tang C W. Anthracene derivatives for stable blue-emitting organic electroluminescence devices[J]. Appl Phys Lett, 2002, 80(17): 3201.

    [15] Di C G, Yu G, Liu Y Q, et al.. High-efficiency low operation voltage organic light-emitting diodes[J]. Appl Phys Lett, 2007, 90(13): 133508.

    CLP Journals

    [1] [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Experimental System for Measuring Carrier Mobility Based on Photo-CELIVZhang PengGong Erdong[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101407

    Liu Yadong, Tian Jie, Song Xinchao, Li Jichao, Zhang Qian. Applications of Combination Hole Injection Layer in Blue OLED[J]. Laser & Optoelectronics Progress, 2015, 52(10): 102301
    Download Citation