• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20210935 (2022)
Liangcai Cao, Zehao He*, Kexuan Liu, and Xiaomeng Sui
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/IRLA20210935 Cite this Article
    Liangcai Cao, Zehao He, Kexuan Liu, Xiaomeng Sui. Progress and challenges in dynamic holographic 3D display for the metaverse (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210935 Copy Citation Text show less
    References

    [1] Marieb E N, Hoehn K N. Human Anatomy & Physiology [M]. 11th ed. London: Pearson, 2018.

    [2] J Geng. Three-dimensional display technologies. Advances in Optics and Photonics, 5, 456-535(2013).

    [3] 5G unlocks a wld of opptunities [ROL]. [20220114].https:www.huawei.comustechnologyinsightsindustryinsightsoutlookmobilebroadbinsightsrepts5 gunlocksawldofopptunities.

    [4] Gr View Research. 3D display market size & share trends analysis rept [DBOL].[20180207]. https:www.grviewresearch.comindustryanalysis3 ddisplaymarket.

    [5] Blundell B, Schwarz A. Volumetric Three Dimensional Display System [M]. New Yk: WileyIEEE Press, 1999.

    [6] Okoshi T. Threedimensional Imaging Techniques [M]. New Yk: Academic Press, 1976.

    [7] B Xu, Q Wu, Y Bao, et al. Time-multiplexed stereoscopic display with a quantum dot-polymer scanning backlight. Applied Optics, 58, 4526-4532(2019).

    [8] T North, M Wagner, S Bourquin, et al. Compact and high-brightness helmet-mounted head-up display system by retinal laser projection. Journal of Display Technology, 12, 982-985(2016).

    [9] Y Wang, W Liu, X Meng, et al. Development of an immersive virtual reality head-mounted display with high performance. Applied Optics, 55, 6969-6977(2016).

    [10] H Hiura, K Komine, J Arai, et al. Measurement of static convergence and accommodation responses to images of integral photography and binocular stereoscopy. Optics Express, 25, 3454-3468(2017).

    [11] Z Zhuang, L Zhang, P Surman, et al. Addressable spatial light modulators for eye-tracking autostereoscopic three-dimensional display using a scanning laser. Applied Optics, 57, 4457-4466(2018).

    [12] Y Meng, Y Lyu, L L Chen, et al. Motion parallax and lossless resolution autostereoscopic 3 D display based on a binocular viewpoint tracking liquid crystal dynamic grating adaptive screen. Optics Express, 29, 35456-35473(2021).

    [13] Y Lin, X Liu, X Liu, et al. Three-dimensional volumetric display system utilizing a rotating two-dimensional LED array. Acta Optica Sinica, 23, 1158-1162(2003).

    [14] H Lu, J Zhang, Z Song, et al. Submillisecond-response light shutter for solid-state volumetric 3 D display based on polymer-stabilized cholesteric texture. Journal of Display Technology, 19, 396-400(2014).

    [15] D Gong, C Wang, X Wang, et al. Static volumetric three-dimensional display based on an electric-field-controlled two-dimensional optical beam scanner. Applied Optics, 58, 7067-7072(2019).

    [16] K Kumagai, I Yamaguchi, Y Hayasaki. Three-dimensionally structured voxels for volumetric display. Optics Letters, 43, 3341-3344(2018).

    [17] F Tian, H Wang, Y Fang, et al. A swept volume display system using a planetary gear structure based on parallel moving. Journal of Display Technology, 8, 457-463(2012).

    [18] W Xie, Y Wang, H Deng, et al. Viewing angle-enhanced integral imaging system using three lens arrays. Chinese Optics Letters, 12, 011101(2014).

    [19] H Ren, Y Xing, H L Zhang, et al. 2D/3D mixed display based on integral imaging and a switchable diffuser element. Applied Optics, 58, G276-G281(2019).

    [20] H -L Zhang, H Deng, H Ren, et al. Method to eliminate pseudoscopic issue in an integral imaging 3 D display by using a transmissive mirror device and light filter. Optics Letters, 45, 351-354(2020).

    [21] L Yang, X Sang, X Yu, et al. A crosstalk-suppressed dense multi-view light-field display based on real-time light-field pickup and reconstruction. Optics Express, 26, 34412-34427(2018).

    [22] D Chen, X Sang, X Yu, et al. Performance improvement of compressive light field display with the viewing-position-dependent weight distribution. Optics Express, 24, 29781-29793(2016).

    [23] Adelson E H, Bergen J R. The Plenoptic Function the Elements of Early Vision [M] Lry M. Movshon J A. Computational models of Visual Processing. Cambridge: MIT Press, 1991: 320.

    [24] Wenger A, Gardner A, Tchou C, et al. Perfmance relighting reflectance transfmation with timemultiplexed illumination [C]Special Interest Group on Computer Graphics Interactive Techniques Conference (SIGGRAPH), 2005, 24: 756764.

    [25] Q Ma, L Cao, Z He, et al. Progress of three-dimensional light-field display. Chinese Optics Letters, 17, 111001(2019).

    [26] H Huang, H Hua. Systematic characterization and optimization of 3D light field displays. Optics Express, 25, 18508-18525(2017).

    [27] M Xu, H Hua. Systematic method for modeling and characterizing multilayer light field displays. Optics Express, 28, 1014-1036(2020).

    [28] Goodman J P. Introduction to Fourier Optics [M]. 4th ed. New Yk: W. H. Freeman & Company, 2017.

    [29] D Pi, J Liu, R Kang, et al. Reducing the memory usage of computer-generated hologram calculation using accurate high-compressed look-up-table method in color 3D holographic display. Optics Express, 27, 28410-28422(2019).

    [30] Z Wang, G Q Lv, Q B Feng, et al. Resolution priority holographic stereogram based on integral imaging with enhanced depth range. Optics Express, 27, 2689-2702(2019).

    [31] Z Wang, L M Zhu, X Zhang, et al. Computer-generated photorealistic hologram using ray-wavefront conversion based on the additive compressive light field approach. Optics Letters, 45, 615-618(2020).

    [32] C Chang, W Cui, L Gao. Holographic multiplane near-eye display based on amplitude-only wavefront modulation. Optics Express, 27, 30960-30970(2019).

    [33] X Sui, Z He, G Jin, et al. Band-limited double-phase method for enhancing image sharpness in complex modulated computer-generated holograms. Optics Express, 29, 2597-2612(2021).

    [34] X Sui, Z He, H Zhang, et al. Spatiotemporal double-phase hologram for complex-amplitude holographic displays. Chinese Optics Letters, 18, 100901(2020).

    [35] K Liu, Z He, L Cao. Pattern-adaptive error diffusion algorithm for improved phase-only hologram generation. Chinese Optics Letters, 19, 050501(2021).

    [36] C Li, L Cao, Z Wang, et al. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer. Optics Letters, 39, 6891-6894(2014).

    [37] J S Lee, Y K Kim, et al. See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens. Optics Express, 26, 19341-19355(2018).

    [38] A W Lohmann. On Moiré fringes as Fourier test objects. Applied Optics, 5, 669-670(1966).

    [39] B R Brown, A W Lohmann. Complex spatial filtering with binary masks. Applied Optics, 5, 967-969(1966).

    [40] J P Waters. Holographic image synthesis utilizing theoretical methods. Applied Physics Letters, 9, 405-407(1967).

    [41] L B Lesem, P M Hirsch, J A Jordan. The kinoform: a new wavefront reconstruction device. IBM Journal of Research and Development, 13, 150-155(1969).

    [42] W H Lee. Sampled Fourier transform hologram generated by computer. Applied Optics, 9, 639-643(1970).

    [43] D Leseberg, C Frère. Computer-generated holograms of 3D objects composed of tilted planar segments. Applied Optics, 27, 3020-3024(1988).

    [44] M Yamaguchi, H Endoh, T Honda, et al. High-quality recording of a full-parallax holographic stereogram with a digital diffuser. Optics Letters, 19, 135-137(1994).

    [45] Yoshikawa H, Kameyama H. Integral holography [C]Proceeding of SPIE, 1995, 2406: 226234.

    [46] Benton S A. Synthetic holography [C]Conference on Lasers ElectroOptics, 1989, 11: JA1.

    [47] P S Hilaire, S A Benton, M Lucente. Synthetic aperture holography: a novel approach to three-dimensional displays. Journal of the Optical Society of America A, 9, 1969-1977(1992).

    [48] M Lucente. Interactive computation of holograms using a look-up table. Journal of Electronic Imaging, 2, 28-34(1993).

    [49] S Nishi, K Shiba, K Mori, et al. Fast calculation of computer-generated Fresnel hologram utilizing distributed parallel processing and array operation. Optical Review, 12, 287-292(2005).

    [50] L Ahrenberg, P Benzie, M Magnor, et al. Computer generated holography using parallel commodity graphics hardware. Optics Express, 14, 7636-7641(2006).

    [51] M L Huebschman, B Munjuluri, H R Garner. Dynamic holographic 3-D image projection. Optics Express, 11, 437-445(2003).

    [52] C S Guo, Z Y Rong, H T Wang, et al. Phase-shifting with computer-generated holograms written on a spatial light modulator. Applied Optics, 42, 6975-6979(2003).

    [53] K Matsushima, H Schimmel, F Wyrowski. Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves. Journal of the Optical Society of America A, 20, 1755-1762(2003).

    [54] K Matsushima, S Nakahara. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method. Applied Optics, 48, H54-H63(2003).

    [55] L Ahrenberg, P Benzie, M Magnor, et al. Computer generated holograms from three dimensional meshes using an analytic light transport model. Applied Optics, 47, 1567-1574(2008).

    [56] K Wakunami, M Yamaguchi. Calculation for computer generated hologram using ray-sampling plane. Optics Express, 19, 9086-9101(2011).

    [57] T Kurihara, Y Takaki. Shading of a computer-generated hologram by zone plate modulation. Optics Express, 20, 3529-3540(2012).

    [58] T Ichikawa, K Yamaguchi, Y Sakamoto. Realistic expression for full-parallax computer-generated holograms with the ray-tracing method. Applied Optics, 52, A201-A209(2013).

    [59] Y Zhao, L Cao, H Zhang, et al. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Optics Express, 23, 25440-25449(2015).

    [60] D E Smalley, Q Y J Smithwick, V M Bove, et al. Anisotropic leaky-mode modulator for holographic video displays. Nature, 498, 313-317(2013).

    [61] T Inoue, Y Takaki. Table screen 360-degree holographic display using circular viewing-zone scanning. Optics Express, 23, 6533-6542(2015).

    [62] R Horisaki, R Takagi, J Tanida. Deep-learning-generated holography. Applied Optics, 57, 3859-3863(2018).

    [63] D Blinder. Direct calculation of computer-generated holograms in sparse bases. Optics Express, 27, 23124-23137(2019).

    [64] P Cencillo-Abad, E Plum, E T F Rogers, et al. Spatial optical phase-modulating metadevice with subwavelength pixelation. Optics Express, 24, 18790-18798(2016).

    [65] A Martins, J Li, Mota A F da, et al. Broadband C-Si metasurfaces with polarization control at visible wavelengths: applications to 3 D stereoscopic holography. Optics Express, 26, 30740-30752(2018).

    [66] J Wu, S Fu, X Zhang, et al. Graphene-oxide/TiO2 nanocomposite films with electron-donors for multicolor holography. Optics Express, 27, 1740-1749(2019).

    [67] Q Jiang, L Cao, H Zhang, et al. Improve the quality of holographic image with complex-amplitude metasurface. Optics Express, 27, 33700-33708(2019).

    [68] J Li, Q Smithwick, D Chu. Scalable coarse integral holographic video display with integrated spatial image tiling. Optics Express, 28, 9899-9912(2020).

    [69] J An, K Won, Y Kim, et al. Slim-panel holographic video display. Nature Communications, 11, 5568(2020).

    [70] L Shi, B Li, C Kim, et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature, 591, 234-239(2021).

    [71] A W Lohmann, D P Paris. Binary Fraunhofer holograms, generated by computer. Applied Optics, 6, 1739-1748(1967).

    [72] T Shimobaba, T Ito. Random phase-free computer-generated hologram. Optics Express, 23, 9549-9554(2015).

    [73] F Wyrowski, O Bryngdahl. Speckle-free reconstruction in digital holography. Journal of the Optical Society of America A, 6, 1171-1174(1989).

    [74] A V Zea, R Torroba. Optimized random phase tiles for non-iterative hologram generation. Applied Optics, 58, 9013-9019(2019).

    [75] H Ma, J Liu, M Yang, et al. Influence of limited random-phase of objects on the image quality of 3 D holographic display. Optics Communications, 385, 153-159(2017).

    [76] T Zhao, J Liu, J Duan, et al. Image quality enhancement via gradient-limited random phase addition in holographic display. Optics Communications, 442, 84-89(2019).

    [77] Y Nagahama, T Shimobaba, T Kakue, et al. Image quality improvement of random phase-free holograms by addressing the cause of ringing artifacts. Applied Optics, 58, 2146-2151(2019).

    [78] D Mengu, E Ulusoy, H Urey. Non-iterative phase hologram computation for low speckle holographic image projection. Optics Express, 24, 4462-4476(2016).

    [79] M L Cruz. Full image reconstruction with reduced speckle noise, from a partially illuminated Fresnel hologram, using a structured random phase. Applied Optics, 58, 1917-1923(2019).

    [80] Z He, X Sui, H Zhang, et al. Frequency-based optimized random phase for computer-generated holographic display. Applied Optics, 60, A145-A154(2021).

    [81] R W Gerchberg, W O Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 1-6(1971).

    [82] C Y Chen, Q L Deng, P J Wu, et al. Speckle reduction by combination of digital filter and optical suppression in a modified Gerchberg-Saxton algorithm computer-generated hologram. Applied Optics, 53, G163-G168(2014).

    [83] Q L Deng, B S Lin, H T Chang, et al. MGSA-type computer-generated holography for vision training with head-mounted display. Journal of Display Technology, 10, 433-437(2014).

    [84] C Y Chen, H T Chang, T J Chang, et al. Full-color and less-speckled modified Gerchberg-Saxton algorithm computer-generated hologram floating in a dual-parabolic projection system. Chinese Optics Letters, 13, 110901(2015).

    [85] S C Liu, D Chu. Deep learning for hologram generation. Optics Express, 29, 27373-27395(2021).

    [86] J W Kang, B S Park, J K Kim, et al. Deep-learning-based hologram generation using a generative model. Applied Optics, 60, 7391-7399(2021).

    [87] H Goi, K Komuro, T Nomura. Deep-learning-based binary hologram. Applied Optics, 59, 7103-7108(2020).

    [88] J Lee, J Jeong, J Cho, et al. Deep neural network for multi-depth hologram generation and its training strategy. Optics Express, 28, 27137-27154(2020).

    [89] T Shimobaba, D Blinder, M Makowski, et al. Dynamic-range compression scheme for digital hologram using a deep neural network. Optics Letters, 44, 3038-3041(2019).

    [90] J Wu, K Liu, X Sui, et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Optics Letters, 46, 2908-2011(2021).

    [91] K Yao, J Wang, X Liu, et al. Analysis of a holographic laser adaptive optics system using a deformable mirror. Applied Optics, 56, 6639-6648(2017).

    [92] G Andersen, P G Austin, R Gaddipati, et al. Fast, compact, autonomous holographic adaptive optics. Optics Express, 22, 9432-9441(2014).

    [93] M A Neil, M J Booth, T Wilson. Closed-loop aberration correction by use of a modal Zernike wave-front sensor. Optics Express, 25, 1083-1085(2000).

    [94] J Otón, P Ambs, M S Millán, et al. Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays. Applied Optics, 46, 5667-5679(2007).

    [95] H J Yeom, H J Kim, S B Kim, et al. 3 D holographic head mounted display using holographic optical elements with astigmatism aberration compensation. Optics Express, 23, 32025-32034(2015).

    [96] A Kaczorowski, G S Gordon, T D Wilkinson. Adaptive, spatially-varying aberration correction for real-time holographic projectors. Optics Express, 24, 15742-15756(2016).

    [97] A Kaczorowski, G S Gordon, A Palani, et al. Optimization-based adaptive optical correction for holographic projectors. Journal of Display Technology, 11, 596-603(2015).

    [98] T Haist, A Peter, W Osten. Holographic projection with field-dependent aberration correction. Optics Express, 23, 5590-5595(2015).

    [99] Z He, X Sui, G Jin, et al. Distortion-correction method based on angular spectrum algorithm for holographic display. IEEE Transactions on Industrial Informatics, 15, 6162-6169(2019).

    [100] Silva R. 3D TV is dead what you need to know [ROL].[20130117].https:www.lifewire.comwhy3 dtvdied4126776.

    [101] R H Y Chen, T D Wilkinson. Computer generated hologram from point cloud using graphics processor. Applied Optics, 48, 6841-6850(2009).

    [102] P Su, W Cao, J Ma, et al. Fast computer-generated hologram generation method for three-dimensional point cloud model. Journal of Display Technology, 12, 1688-1694(2016).

    [103] J S Chen, D P Chu. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications. Optics Express, 23, 18143-18155(2015).

    [104] J Jia, J Si, D Chu. Fast two-step layer-based method for computer generated hologram using sub-sparse 2 D fast Fourier transform. Optics Express, 26, 17487-17497(2018).

    [105] Y Pan, Y Wang, J Liu, et al. Fast polygon-based method for calculating computer-generated holograms in three-dimensional display. Applied Optics, 52, A290-A299(2013).

    [106] J P Liu, H K Liao. Fast occlusion processing for a polygon-based computer-generated hologram using the slice-by-slice silhouette method. Applied Optics, 57, A215-A221(2018).

    [107] M Yamaguchi, K Wakunami, M Inaniwa. Computer generated hologram from full-parallax 3 D image data captured by scanning vertical camera array. Chinese Optics Letters, 12, 060018(2014).

    [108] H Yanagihara, T Kakue, Y Yamamoto, et al. Real-time three-dimensional video reconstruction of real scenes with deep depth using electro-holographic display system. Optics Express, 27, 15662-15678(2019).

    [109] Y Ichihashi, R Oi, T Senoh, et al. Real-time capture and reconstruction system with multiple GPUs for a 3 D live scene by a generation from 4 K IP images to 8 K holograms. Optics Express, 20, 21645-21655(2012).

    [110] J Wu, H Chen, X Liu, et al. Unsupervised texture reconstruction method using bidirectional similarity function for 3-D measurements. Optics Communications, 439, 85-93(2019).

    [111] M Yamaguchi. Light-field and holographic three-dimensional displays. Journal of Optics Society of America A, 33, 2348-2364(2016).

    [112] S Igarashi, T Nakamura, K Matsushima, et al. Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion. Optics Express, 26, 10773-10786(2018).

    [113] S F Tsai, C C Cheng, C T Li, et al. A real-time 1080 p 2 D-to-3 D video conversion system. IEEE Transactions on Consumer Electronics, 57, 915-922(2011).

    [114] C C Cheng, C T Li, L G Chen. A novel 2D-to-3D conversion system using edge information. IEEE Transactions on Consumer Electronics, 56, 1739-1745(2010).

    [115] Y K Lai, Y F Lai, Y C Chen. An effective hybrid depth-generation algorithm for 2D-to-3D conversion in 3 D displays. Journal of Display Technology, 9, 154-161(2013).

    [116] Z Zhang, S Yin, L Liu, et al. A real-time time-consistent 2D-to-3D video conversion system using color histogram. IEEE Transactions on Consumer Electronics, 61, 524-530(2015).

    [117] J Gil, M Kim. Motion depth generation using MHI for 2D-to-3D video conversion. Electronics Letters, 53, 1520-1522(2017).

    [118] Z He, X Sui, L Cao. Holographic 3D display using depth maps generated by 2 D-to-3 D rendering approach. Applied Sciences, 11, 9889(2021).

    [119] W Huang, X Cao, K Lu, et al. Toward naturalistic 2D-to-3D conversion. IEEE Transactions on Image Processing, 24, 724-733(2015).

    [120] J Konrad, M Wang, P Ishwar, et al. Learning-based, automatic 2D-to-3D image and video conversion. IEEE Transactions on Image Processing, 22, 3485-3496(2013).

    [121] L Herrera J, R del-Blanco C, García N. A novel 2D to 3D video conversion system based on a machine learning approach. IEEE Transactions on Consumer Electronics, 62, 429-436(2016).

    CLP Journals

    [1] Chao Zuo, Qian Chen. Computational optical imaging: An overview[J]. Infrared and Laser Engineering, 2022, 51(2): 20220110

    Liangcai Cao, Zehao He, Kexuan Liu, Xiaomeng Sui. Progress and challenges in dynamic holographic 3D display for the metaverse (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210935
    Download Citation