• Advanced Photonics Nexus
  • Vol. 2, Issue 4, 046007 (2023)
Shuai Cui1、2, Kaixiang Cao1、2, Zhao Pan1、2, Xiaoyan Gao1、2, Yuan Yu1、2、*, and Xinliang Zhang1、2
Author Affiliations
  • 1Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Wuhan, China
  • 2Optics Valley Laboratory, Wuhan, China
  • show less
    DOI: 10.1117/1.APN.2.4.046007 Cite this Article Set citation alerts
    Shuai Cui, Kaixiang Cao, Zhao Pan, Xiaoyan Gao, Yuan Yu, Xinliang Zhang. Compact microring resonator based on ultralow-loss multimode silicon nitride waveguide[J]. Advanced Photonics Nexus, 2023, 2(4): 046007 Copy Citation Text show less
    References

    [1] N. Margalit et al. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett., 118, 220501(2021).

    [2] L. Zhang et al. Ultrahigh-Q silicon racetrack resonators. Photonics Res., 8, 684-689(2020). https://doi.org/10.1364/PRJ.387816

    [3] L. Zhang et al. Ultralow-loss silicon photonics beyond the singlemode regime. Laser Photonics Rev., 16, 2100292(2022).

    [4] C. Calò et al. Hybrid InP-SiN microring-resonator based tunable laser with high output power and narrow linewidth for high capacity coherent systems(2022).

    [5] Z. Wu et al. Coexistence of multiple microcombs in monochromatically pumped Si3N4 microresonators. Opt. Lett., 47, 1190-1193(2022). https://doi.org/10.1364/OL.451673

    [6] D. J. Moss et al. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [7] C. Xiang et al. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron., 28, 1-15(2022).

    [8] A. L. Gaeta et al. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [9] F. Ferdous et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photonics, 5, 770-776(2011).

    [10] Z. Ye et al. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits. Photonics Res., 11, 558-568(2023).

    [11] X. Ji et al. Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun. Phys., 5, 84(2022).

    [12] A. M. Jones et al. Ultra-low crosstalk, CMOS compatible waveguide crossings for densely integrated photonic interconnection networks. Opt. Express, 21, 12002-12013(2013).

    [13] L. Chen et al. Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon. IEEE Photonics Technol. Lett., 23, 869-871(2011).

    [14] L. Chen et al. Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing. Opt. Express, 19, B946-951(2011).

    [15] M. Sodagar et al. High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities. Opt. Express, 22, 16767-16777(2014). https://doi.org/10.1364/OE.22.016767

    [16] J. F. Bauters et al. Silicon on ultra-low-loss waveguide photonic integration platform. Opt. Express, 21, 544-555(2013).

    [17] M. Piels et al. Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors. J. Lightwave Technol., 32, 817-823(2014).

    [18] M. W. Puckett et al. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun., 12, 934(2021).

    [19] X. Ji et al. Exploiting ultralow loss multimode waveguides for broadband frequency combs. Laser Photonics Rev., 15, 2000353(2020).

    [20] D. T. Spencer et al. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica, 1, 153-157(2014). https://doi.org/10.1364/OPTICA.1.000153

    [21] X. Lu et al. High-Q slow light and its localization in a photonic crystal microring. Nat. Photonics, 16, 66-71(2022). https://doi.org/10.1038/s41566-021-00912-w

    [22] A. Misra et al. Nonlinearity- and dispersion-less integrated optical time magnifier based on a high-Q SiN microring resonator. Sci. Rep., 9, 14277-14287(2019). https://doi.org/10.1038/s41598-019-50691-2

    [23] F. Vollmer, L. Yang. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 1, 267-291(2012). https://doi.org/10.1515/nanoph-2012-0021

    [24] M. H. P. Pfeiffer et al. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica, 5, 884-892(2018).

    [25] J. Liu et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [26] J. Liu et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits, 1-1(2021).

    [27] J. Liu et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [28] Z. Ye et al. Integrated, ultra-compact high-Q silicon nitride microresonators for low-repetition-rate soliton microcombs. Laser Photonics Rev., 16, 2100147(2021). https://doi.org/10.1002/lpor.202100147

    [29] X. Ji et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [30] Y. Li et al. Large group delay and low loss optical delay line based on chirped waveguide Bragg gratings. Opt. Express, 31, 4630-4638(2023).

    [31] D. Melati et al. A unified approach for radiative losses and backscattering in optical waveguides. J. Opt., 16, 055502-055508(2014).

    [32] M. Burla et al. Ultra-high Q multimode waveguide ring resonators for microwave photonics signal processing(2015). https://doi.org/10.1109/MWP.2015.7356707

    [33] X. Liu et al. Silicon-on-insulator-based microwave photonic filter with narrowband and ultrahigh peak rejection. Opt. Lett., 43, 1359-1362(2018).

    [34] P. Rabiei et al. Polymer micro-ring filters and modulators. J. Lightwave Technol., 20, 1968-1975(2002).

    [35] F. Peng et al. Sensitivity prediction of multiturn fiber coil-based fiber-optic flexural disk seismometer via finite element method analysis. J. Lightwave Technol., 35, 3870-3876(2017).

    [36] W. Jin et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021). https://doi.org/10.1038/s41566-021-00761-7

    [37] D. Chatzitheocharis et al. Design of Vernier-ring reflectors in thick Si3N4 platform. Proc. SPIE, 11689, -116891W(2021). https://doi.org/10.1117/12.2583226

    [38] N. G. Pavlov et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics, 12, 694-698(2018).

    [39] K. Y. Yang et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photonics, 12, 297-302(2018). https://doi.org/10.1038/s41566-018-0132-5

    [40] J. Liu et al. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 5, 1347-1313(2018).

    [41] L. Maleki. The optoelectronic oscillator. Nat. Photonics, 5, 728-730(2011).

    Shuai Cui, Kaixiang Cao, Zhao Pan, Xiaoyan Gao, Yuan Yu, Xinliang Zhang. Compact microring resonator based on ultralow-loss multimode silicon nitride waveguide[J]. Advanced Photonics Nexus, 2023, 2(4): 046007
    Download Citation