• Infrared and Laser Engineering
  • Vol. 49, Issue 1, 103002 (2020)
Liang Jing1、2、3, Zhou Liangliang1、2、3, Li Bin1、2、3, Li Xueming1, and Tang Libin2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla202049.0103002 Cite this Article
    Liang Jing, Zhou Liangliang, Li Bin, Li Xueming, Tang Libin. Research on the preparation, structure and infrared properties of Sb2Te3 quantum dots[J]. Infrared and Laser Engineering, 2020, 49(1): 103002 Copy Citation Text show less
    References

    [1] Yavorsky B Y, Hinsche N F, Mertig I, et al. Electronic structure and transport anisotropy of Bi2Te3 and Sb2Te3[J]. Physical Review B Condensed Matter, 2011, 84(16):3529-3538.

         Yavorsky B Y, Hinsche N F, Mertig I, et al. Electronic structure and transport anisotropy of Bi2Te3 and Sb2Te3[J]. Physical Review B Condensed Matter, 2011, 84(16):3529-3538.

    [3] Hu S, Tang R, Tian C, et al. The influence of thickness on the properties of Sb2Te3 thin films and its application in CdS/CdTe thin film solar cells[J]. Specialized Collections, 2011, 225-226: 789-793.

         Hu S, Tang R, Tian C, et al. The influence of thickness on the properties of Sb2Te3 thin films and its application in CdS/CdTe thin film solar cells[J]. Specialized Collections, 2011, 225-226: 789-793.

    [4] Souza S M, Poffo C M, Trichês D M, et al. High pressure monoclinic phases of Sb2Te3[J]. Physica B Condensed Matter, 2012, 407(18): 3781-3789.

         Souza S M, Poffo C M, Trichês D M, et al. High pressure monoclinic phases of Sb2Te3[J]. Physica B Condensed Matter, 2012, 407(18): 3781-3789.

    [5] Fang B, Zeng Z, Yan X, et al. Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(4): 1105-1111.

         Fang B, Zeng Z, Yan X, et al. Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(4): 1105-1111.

    [6] Hinsche N F, Zastrow S, Gooth J, et al. Impact of the topological surface state on the thermoelectric transport in Sb2Te3 thin films[J]. Acs Nano, 2015, 9(4): 4406-4411.

         Hinsche N F, Zastrow S, Gooth J, et al. Impact of the topological surface state on the thermoelectric transport in Sb2Te3 thin films[J]. Acs Nano, 2015, 9(4): 4406-4411.

    [7] Shen H, Lee S, Kang J G, et al. Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films[J]. Applied Surface Science, 2017, 429: 115-120.

         Shen H, Lee S, Kang J G, et al. Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films[J]. Applied Surface Science, 2017, 429: 115-120.

    [8] Yang J, Zhu W, Gao X, et al. Formation and characterization of Sb2Te3 nanofilms on Pt by electrochemical atomic layer epitaxy[J]. Journal of Physical Chemistry B, 2006, 110(10): 4599-4604.

         Yang J, Zhu W, Gao X, et al. Formation and characterization of Sb2Te3 nanofilms on Pt by electrochemical atomic layer epitaxy[J]. Journal of Physical Chemistry B, 2006, 110(10): 4599-4604.

    [9] Hao G, Qi X, Wang G, et al. Synthesis and characterization of few-layer Sb2Te3 nanoplates with electrostatic properties[J]. RSC Advances, 2012, 2(28): 10694-10699.

         Hao G, Qi X, Wang G, et al. Synthesis and characterization of few-layer Sb2Te3 nanoplates with electrostatic properties[J]. RSC Advances, 2012, 2(28): 10694-10699.

    [10] Zhou J, Wang Y, Sharp J, et al. Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites[J]. Physical Review B (Condensed Matter and Materials Physics), 2012, 85(11): 115320.

         Zhou J, Wang Y, Sharp J, et al. Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites[J]. Physical Review B (Condensed Matter and Materials Physics), 2012, 85(11): 115320.

    [11] Peng C, Wu L, Song Z, et al. Performance improvement of Sb2Te3 phase change material by Al doping[J]. Applied Surface Science, 2011, 257(24): 10667-10670.

         Peng C, Wu L, Song Z, et al. Performance improvement of Sb2Te3 phase change material by Al doping[J]. Applied Surface Science, 2011, 257(24): 10667-10670.

    [12] Dong G H, Zhu Y J, Chen L D. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering[J]. Journal of Materials Chemistry, 2010, 20(10): 1976-1981.

         Dong G H, Zhu Y J, Chen L D. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering[J]. Journal of Materials Chemistry, 2010, 20(10): 1976-1981.

    [13] Schulz S, Heimann S, Friedrich J, et al. Synthesis of hexagonal Sb2Te3 nanoplates by thermal decomposition of the single-source precursor (Et2Sb)2Te[J]. Chemistry of Materials, 2012, 24(11): 2228-2234.

         Schulz S, Heimann S, Friedrich J, et al. Synthesis of hexagonal Sb2Te3 nanoplates by thermal decomposition of the single-source precursor (Et2Sb)2Te[J]. Chemistry of Materials, 2012, 24(11): 2228-2234.

    [14] Zheng B, Xiao Z, Chhay B, et al. Thermoelectric properties of MeV Si ion bombarded Bi2Te3/Sb2Te3 superlattice deposited by magnetron sputtering[J]. Surface & Coatings Technology, 2009, 203(17):2682-2686.

         Zheng B, Xiao Z, Chhay B, et al. Thermoelectric properties of MeV Si ion bombarded Bi2Te3/Sb2Te3 superlattice deposited by magnetron sputtering[J]. Surface & Coatings Technology, 2009, 203(17):2682-2686.

    [15] Aksela S, Patanen M, Urpelainen S, et al. Direct experimental determination of atom-molecule-solid binding energy shifts for Sb and Bi[J]. New Journal of Physics, 2010, 12(6):063003.

         Aksela S, Patanen M, Urpelainen S, et al. Direct experimental determination of atom-molecule-solid binding energy shifts for Sb and Bi[J]. New Journal of Physics, 2010, 12(6):063003.

    [16] Asish P, Sang S E, Fan Y, et al. Broadband, self-biased photodiode based on antimony telluride (Sb2Te3) nanocrystals/silicon heterostructure[J]. Nanoscale, 2018, 10(31): 15003-15009.

         Asish P, Sang S E, Fan Y, et al. Broadband, self-biased photodiode based on antimony telluride (Sb2Te3) nanocrystals/silicon heterostructure[J]. Nanoscale, 2018, 10(31): 15003-15009.

    [17] Khusayfan N M, Qasrawi A F, Khanfar H. Design and electrical performance of CdS/Sb2Te3 tunneling heterojunction devices[J]. Materials Research Express, 2018, 5(2): 026303.

         Khusayfan N M, Qasrawi A F, Khanfar H. Design and electrical performance of CdS/Sb2Te3 tunneling heterojunction devices[J]. Materials Research Express, 2018, 5(2): 026303.

    [18] Lu Xiaowei, Khatib Omar, Du Xutao, et al. Nanoimaging of electronic heterogeneity in Bi2Se3 and Sb2Te3 nanocrystals[J]. Advanced Electronic Materials, 2018, 4(1): 1700377.

         Lu Xiaowei, Khatib Omar, Du Xutao, et al. Nanoimaging of electronic heterogeneity in Bi2Se3 and Sb2Te3 nanocrystals[J]. Advanced Electronic Materials, 2018, 4(1): 1700377.

    [19] Lu Hua, Dai Siqing, Yue Zengji, et al. Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring[J]. Nanoscale, 2019, 11(11): 4759-4766.

         Lu Hua, Dai Siqing, Yue Zengji, et al. Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring[J]. Nanoscale, 2019, 11(11): 4759-4766.

    [20] Al-Masoodi A H H, Fauzan A, Ahmed M H M, et al. Q-switched and mode-locked ytterbium-doped fibre lasers with Sb2Te3 topological insulator saturable absorber[J]. IET Optoelectronics, 2018, 12(4): 180-184.

         Al-Masoodi A H H, Fauzan A, Ahmed M H M, et al. Q-switched and mode-locked ytterbium-doped fibre lasers with Sb2Te3 topological insulator saturable absorber[J]. IET Optoelectronics, 2018, 12(4): 180-184.

    Liang Jing, Zhou Liangliang, Li Bin, Li Xueming, Tang Libin. Research on the preparation, structure and infrared properties of Sb2Te3 quantum dots[J]. Infrared and Laser Engineering, 2020, 49(1): 103002
    Download Citation