• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 3, 378 (2018)
ZHANG Xiao-Ying1、*, JIA Lei1, ZHU Jiang2, YAN Xia-Chao2, ZHANG La-Bao2, KANG Lin2, and WU Pei-Heng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.03.019 Cite this Article
    ZHANG Xiao-Ying, JIA Lei, ZHU Jiang, YAN Xia-Chao, ZHANG La-Bao, KANG Lin, WU Pei-Heng. Comparison of laser ranging system based on SNSPD and SPAD detectors[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 378 Copy Citation Text show less
    References

    [1] Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures[J]. Reviews of Modern Physics, 2015, 87(2): 347.

    [2] Haiyun Xia, Guoliang Shentu, Mingjia Shangguan, et al. Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector[J]. Optics letters, 2015,40(7): 1579-1582.

    [3] Jianyong Hu, Bo Yu, Mingyong Jing, et al. Experimental quantum secure direct communication with single photons[J]. Light: Science & Applications, 2016, 5(9): e16144.

    [4] Eisaman M D, André A, Massou F, et al. Electromagnetically induced transparency with tunable single-photon pulses[J]. Nature, 2005, 438(7069): 837-841.

    [6] Michalet X, Colyer R A, Scalia G, et al. Development of new photon-counting detectors for single-molecule fluorescence microscopy[J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2013, 368(1611): 20120035.

    [7] Jun Zhang, Itzler M A, Zbinden Hugo, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication[J]. Light: Science & Applications, 2015, 4(5): e286.

    [9] Comandar L C, Frhlich B, Dynes J F, et al. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm[J]. Journal of Applied Physics, 2015, 117(8): 083109.

    [10] Takesue H, Nam S W, Zhang Q, et al. Quantum key distribution over a 40 dB channel loss using superconducting single-photon detectors[J]. Nature photonics, 2007, 1(6): 343-348.

    [11] Marsili F, Verma V B, Stern J A, et al. Detecting single infrared photons with 93% system efficiency[J]. Nature Photonics, 2013, 7(3): 210-214.

    [13] Li Xue, Zhulian Li, Labao Zhang, et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength[J]. Optics Letters, 2016(41), 3848-3851.

    [14] Hao Li, Lu Zhang, Lixing You, et al. Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency, Optics Express, 2015(23), 17301-17308.

    [17] Xiaoyan Yang, Hao Li, Weijun Zhang, et al. Superconducting nanowire single photon detector with on-chip bandpass filter[J], Optics Express, 2014(22), 16267-16272.

    [18] Wei Lu, Michael A. Krainak, Guangning Yang, et al. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging[J]Spie Commercial + Scientific Sensing & Imaging, 2016, 9858:98580S.

    [19] Grein M E, Kerman A J, Dauler E A, et al. An optical receiver for the Lunar Laser Communication Demonstration based on photon-counting superconducting nanowires[C]Proc. SPIE. 2015, 9492:949208.

    [20] Markman A, Javidi B, Tehranipoor M. Photon-counting security tagging and verification using optically encoded QR codes[J]. IEEE Photonics Journal, 2014, 6(1): 1-9.

    [21] Destrempes F, Cloutier G. A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope[J]. Ultrasound in medicine & biology, 2010, 36(7): 1037-1051.

    [22] Al-Habash M A, Andrews L C, Phillips R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 2001, 40(8):1554-1562.

    [23] Korneev A, Kouminov P, Matvienko V, et al. Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors[J]. Applied Physics Letters, 2004, 84(26):5338-5340.

    [24] Divochiy A, Marsili F, Bitauld D, et al. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths[J]. Nature Photonics, 2008, 2(5):302-306.

    [25] Labao Zhang, Sen Zhang, Xu Tao, et al. Quasi-Gated Superconducting Nanowire Single-Photon Detector[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(2):1-6.

    [26] Labao Zhang, Xiachao Yan, Chengtao Jiang, et al. SNSPDs on a magnesium fluoride substrate for high system efficiency and ultra-wide band[J]. IEEE Photonics Technology Letters, 2016, 28(22): 2522-2525.

    [27] Rosfjord K M, Yang J K W, Dauler E A, et al. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating [J]. Optics Express, 2006, 14(2): 527-534.

    [28] Labao Zhang, Cao Wan, Min Gu, et al. Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors[J]. Science bulletin, 2015, 60(16):1434-1438.

    [29] Labao Zhang, Min Gu, Tao Jia, et al. Multimode fiber coupled superconductor nanowire single-photon detector[J]. IEEE Photonics Journal, 2014, 6(5):1-8.

    ZHANG Xiao-Ying, JIA Lei, ZHU Jiang, YAN Xia-Chao, ZHANG La-Bao, KANG Lin, WU Pei-Heng. Comparison of laser ranging system based on SNSPD and SPAD detectors[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 378
    Download Citation