• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 4, 477 (2020)
Shuai HU1、2、*, Lei LIU1、2, Xichuan LIU1, and Taichang GAO1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2020.04.009 Cite this Article
    HU Shuai, LIU Lei, LIU Xichuan, GAO Taichang. Progress of measurement techniques of multi-angle scattering properties of atmospheric particles[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 477 Copy Citation Text show less
    References

    [1] Liou K N. An Introduction to Atmospheric Radiation[M]. San Diego: Academic Press, 2003.

    [2] Yang P, Liou K N, Bi L, et al. On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization[J]. Advances in Atmospheric Sciences, 2015, 32: 32-63.

    [5] Dou T, Xiao C, Shindell D T, et al. The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model[J]. Atmospheric Chemistry and Physics, 2012, 12: 7995-8007.

    [6] IPCC: Climate change 2007. Intergovernmental panel of global climate change[R]. 2007.

    [7] Liou K N, Takano Y, Yang P. Intensity and polarization of dust aerosols over polarized anisotropic surfaces[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 127: 149-157.

    [15] Liu Dong, Wang YingJian, Wang Zhien, et al. Development and data application of space borne lidar for atmospheric sounding[C]. 10th National Optoelectronic Technology Academic Exchange Conference, 2012.

    [17] Deuzé J L, Goloub P, Herman M, et al. Estimate of the aerosol properties over the ocean with POLDER[J]. Journal of Geophysical Research, 2000, 105(D12): 15329-15346.

    [18] Deuzé J L, Bréon F M, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. Journal of Geophysical Research, 2001, 106(D5): 4913-4926.

    [20] Hu S, Gao T, Li H, et al. Effect of atmospheric refraction on radiative transfer in visible and near-infrared band: Model development, validation, and applications[J].Journal of Geophysical Research: Atmospheres, 2016, 121: 2349-2368.

    [23] Cheng T H, Gu X F, Yu T, et al. The reflection and polarization properties of non-spherical aerosol particles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(6): 895-906.

    [24] Dubovik O, Sinyuk A, Lapyonok T, et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust[J]. Journal of Geophysical Research, 2006, 111: D11208.

    [26] Herman M, Deuzé J L, Marchand A, et al. Aerosol remote sensing from POLDER//ADEOS over the ocean: Improved retrieval using a nonspherical particle model[J]. Journal of Geophysical Research, 2005, 110: D10S02.

    [31] Lienert B R, Porter J N, Sharma S K. Aerosol size distributions from genetic inversion of polar nephelometer data[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(4): 1403.

    [32] Barkey B, Paulson S E, Chung A. Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index[J]. Aerosol Science and Technology, 2007, 41: 751-760.

    [36] Ulanowski Z, Hesse E, Kaye P H, et al. Scattering of light from atmospheric ice analogues[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2003, 79-80: 1091-1102.

    [37] Barkey B, Paulson S, Liou K N. Polar Nephelometers for Light Scattering by Ice Crystals and Aerosols: Design and Measurements (Light Scattering Review)[M]. Springer, 2012: 3-37.

    [38] Liu L, Mishchenko M I, Arnott W P. A study of radiative properties of fractal soot aggregates using the superposition T-matrix method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(15): 2656-2663.

    [39] Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols[J]. Atmospheric Chemistry and Physics, 2012, 12(21): 779-799.

    [40] Hanel G, Zankl B. Aerosol size and relative humidity: Water uptake by mixtures of salts[J]. Tellus, 1984, 31(8): 478-486.

    [41] Tang I N. Chemical and size effects of hygroscopic aerosols on light scattering coeffients[J]. Journal of Geophysical Research, 1996, 101(D14): 19245-19250.

    [42] Muoz O, Moreno F, Guirado D, et al. The Amsterdam-Granada light scattering database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(7): 565-574.

    [43] Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. Journalof the Optical Society of America A, 1994, 11(4): 1491-1499.

    [44] Yurkin M A, Hoekstra A G. The discrete-dipole-approximation code ADDA: Capabilities and known limitations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(13): 2234-2247.

    [45] Yang P, Liou K N. Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics models[J]. Journal of the Optical Society of America A, 1995, 12(1): 162-176.

    [46] Hu S, Gao T, Li H, et al. Light scattering computation model for nonspherical aerosol particles based on multi-resolution time-domain scheme: Model development and validation[J]. Optics Express, 2017, 25(2): 1643-1686.

    [47] Hu S, Gao T, Li H, et al. Application of convolution perfectly matched layer in MRTD scattering model for non-spherical aerosol particles and its performance analysis[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 200: 1-11.

    [48] Hu S, Gao T, Li H, et al. Simultaneously simulating the scattering properties of nonspherical aerosol particles with different sizes by the MRTD scattering model[J]. Optics Express, 2017, 25(15): 17872-17891.

    [49] Hu S, Gao T, Liu L, et al. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2018, 209: 58-72.

    [50] Hu S, Gao T, Li H, et al. Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique[J]. Chinese Physics B, 2018, 27(5): 054215.

    [51] Liu C, Bi L, Panetta R L, et al. Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations[J]. Optics Express, 2012, 20(15): 16763-16776.

    [52] Liu C, Panetta R L, Yang P. Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2012, 113: 1728-1740.

    [53] Liu C, Panetta R L, Yang P. The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 129: 169-185.

    [54] Bi L, Yang P, Kattawar G W, et al. Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 116: 169-183.

    [55] Hu S, Liu L, Gao T, et al. Design and validation of the invariant imbedded T-matrix scattering model for atmospheric particles with arbitrary shapes[J]. Applied Sciences, 2019, 9(20): 4423.

    [56] Hu S, Liu L, Gao T, et al. An efficient implementation of the light scattering simulation for random-oriented non-rotationally symmetric particles using invariant imbedding T-matrix method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 241: 106734.

    [57] Mishchenko M I, Hovenier J W, Travis L D. Light Scattering by Nonspherical Particles, Thoery, Measurements, and Application[M]. New York: Academic Press, 2000.

    [58] Mishchenko M I, Travis L D. Capabilities and limitations of a current Fortran implementation of the T-martrix method for randomly oriented, rotationally symmetric scatterers[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 1998, 60(3): 309-324.

    [59] Kalashnikov O V, Sokolik I N. Modeling the radiative properties of nonspherical soil-derived mineral aerosols[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 87: 137-166.

    [60] Kahnert M, Kylling A. Radiance and flux simulations for mineral dust aerosols: Assessing the error due tousing spherical or spheroidal model particles[J]. Journal of Geophysical Research Atmospheres, 2004, 109(D9): 729-736.

    [61] Hovenier J W, Volten H, Munoz O, et al. Laboratory studies of scattering matrices for randomly oriented particles: Potentials, problems, and perspectives[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2003, 70-80: 741-755.

    [62] Kerker M. Light scattering instrumentation for areosol study: A historical overview[J]. Aerosol Science & Technology, 1997, 27(11): 522-540.

    [63] Dellago. Bestimmung der Grbenverteilung von Aerosolpartikeln aus optischen Daten-Mglichkeiten und Probleme[D]. Master Thesis of University of Vienna, 1991.

    [64] Kuik F, Stammes P, Hovenier J W. Experimental determination of scattering matrices of water droplets and quartz particles[J]. Applied Optics, 1991, 30(33): 4872-4881.

    [65] Tyler J E, Richardson W H. Nephelometer for the measurement of volume scattering function in situ[J]. Journal of the Optical Society of America A, 1958, 48(5): 354-357.

    [66] Quiney R G, Carswell A. Laboratory measurements of light scattering by simulated atmospheric aerosols[J]. Applied Optics, 1972 11(7): 1611-1618.

    [67] Hunt A J, Huffman D R. A new polarization modulated light scattering instrument[J]. Review of Scientific Instruments, 1973, 44(12): 1753-1762.

    [68] Thompson R C, Bottiger J R, Fry E S. Measurement of polarized light interactions via the Mueller matrix[J]. Applied Optics, 1980, 19(8): 1323-1332.

    [69] Volten H, Munoz O, Rol E, et al. Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm[J]. Journal of Geophysical Research, 2001, 106(D51): 17375-17401.

    [70] Ulanowski Z, Greenaway R S, Kaye P H, et al. Laser diffractometer for single-particle scattering measurements[J]. Measurement Science and Technology, 2002, 13(3): 292-296.

    [71] Renard J B, Hadamcik E, Couté B, et al. Wavelength dependence of linear polarization in the visible and near infrared domain for large levitating grains (PROGRA2 instruments)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146: 424-430.

    [72] Gorchakov G I. Light scattering matrices in the atmospheric surface layer[J]. Bull(Izv) Acad Sci USSR, 1966, 2: 595-605.

    [73] Holland A C, Draper J S. Analytical and experimental investigation of light scattering from polydispersions of Mie particles[J]. Applied Optics, 1967, 6(3): 511-518.

    [74] Holland A C, Gagne G. The scattering of polarized light by polydisperse systems of irregular particles[J]. Applied Optics, 1970, 9(5): 1113-1121.

    [75] Huffman P. Polarization of light scattered by ice crystals[J]. Journal of the Atmospheric Sciences, 1970, 27: 1207-1208.

    [76] Perry R J, Hunt A J, Huffman D R. Experimental determinations of Mueller scattering matrices for nonspherical particles[J]. Applied Optics, 1978, 17(17): 2700-2710.

    [77] Sassen K, Liou K N. Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: Angular scattering patterns[J]. Journal of the Atmospheric Sciences, 1979, 36: 838-851.

    [78] Sassen K, Liou K N. Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part II: Angular depolarizing and multiple scattering behavior[J]. Journal of the Atmospheric Sciences, 1979, 36: 852-861.

    [79] Dugin V P, Golubitskiy B M, Mirumyants S O, et al. Optical properties of articial ice clouds[J]. Bull (Izv) Acad Sci USSR, 1971, 7: 871-877.

    [80] Dugin V P, Mirumyants S O. The light scattering matrices of artificial crystalline clouds[J]. Bull (Izv) Acad Sci USSR, Atmospheric and Oceanic Physics, 1976, 9: 988-991.

    [81] Hanson M Z, Evans W H. Polar nephelometer for atmospheric particulate studies[J]. Applied Optics, 1980, 19(19): 3389-3395.

    [82] Takamura T, Tanaka M. Measurements of intensity and degree of polarization of light scattered by aerosols[J]. Science Reports of the Tohoku University Ser Geophysics, 1978, 25: 169-196.

    [83] Tanaka M T, NakajimaT. Refractive index and size distribution of aerosols as estimated from light scattering measurements[J]. Journal of Climatology & Applied Meteorology, 1983, 22(7): 1253-1261.

    [84] Quinby-Hunt M S, Erskine L L, Hunt A J. Polarized light scattering by aerosols in the marine atmospheric boundary layer[J]. Applied Optics, 1997, 36(21): 5168-5184.

    [85] Zhao F, Gong Z, Hu H, et al. Simultaneous determination of the aerosol complex index of refraction and size distribution from scattering measurements of polarized light[J]. Applied Optics, 1997, 36(30): 7992-8001.

    [86] Zhao F. Determination of the complex index of refraction and size distribution of aerosols from polar nephelometer measurements[J]. Applied Optics, 1999, 38(12): 2331-2336.

    [87] Schnaiter M, Wurm G. Experiments on light scattering and extinction by small, micrometer-sized aggregates of spheres.[J]. Applied Optics, 2002, 41(6): 1175-1180.

    [88] Porter J N, Lienert B R, Sharma S K, et al. Vertical and horizontal aerosol scattering fields over Bellows beach, Oahu, during the SEAS experiment[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(13): 1375-1387.

    [92] Pluchino A. Scattering photometer for measuring single ice crystals and evaporation and condensation rates of liquid droplets[J]. Journal of the Optical Society of America A, 1987, 4(3): 614-620.

    [93] Dick W D, McMurry P H, Bottiger J R. Size-and composition-dependent response of the DAWN-A multiangle single-particle optical detector[J]. Aerosol Science and Technology, 1994, 20(4): 345-362.

    [94] Dick W D, Ziemann P J, Huang P F, et al. Optical shape fraction measurements of submicrometre laboratory and atmospheric aerosols[J]. Measurement Science and Technology, 1998, 9(2): 183-196.

    [95] Leong K H, Jones M R, Holdridge D J. Design and test of a polar nephelometer[J]. Aerosol Science and Technology, 1995, 23(16): 341-356.

    [96] West R A, Doose L R, Eibl A M. Laboratory measurements of mineral dust scattering phase function and linear polarization[J]. Journal of Geophysical Research, 1997, 102(D14): 16871-16881.

    [97] Barkey B, Liou K N. Polar nephelometer for light-scattering measurements of ice crystals[J]. Optics Letters, 2001, 26(4): 232-234.

    [98] Abdelmonem A, Schnaiter M, Amsler P, et al. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe[J]. Atmospheric Measurement Techniques, 2011, 4: 2125-2142.

    [99] Schn R, Schnaiter M, Ulanowski Z, et al. Particle habit imaging using incoherent light: A first step toward a novel instrument for cloud microphysics[J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(4): 493-512.

    [101] Dick W D, Ziemann P J, McMurry P H. Multiangle light-scattering measurements of refractive index of submicron atmospheric particles[J]. Aerosol Science and Technology, 2007, 41(5): 549-569.

    [102] Jones M R, Curry B P, Brewster M Q, et al. Inversion of light-scattering measurements for particle size and optical constants: Theoretical study[J]. Applied Optics, 1994, 33(18): 4025-4034.

    [103] Jones M R, Leong K H, Brewster M Q, et al. Inversion of light-scattering measurements for particle size and optical constants: Experimental study[J]. Applied Optics, 1994, 33(8): 4035-4041.

    [105] Bartholdi M, Salzman G C, Hiebert R D, et al. Differential light scattering photometer for rapid analysis of single particles in flow[J]. Applied Optics, 1980, 19(10): 1573-1581.

    [106] Hirst E, Kaye P H, Guppy J R. Light scattering from nonspherical airborne particles: Experimental and theoretical comparisons[J]. Applied Optics, 1994, 33(30): 7180-7186.

    [107] Gayet J F, Crepel O, Fournol J F, et al. A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design[J]. Annales Geophysicae, 1997, 15(13): 451-459.

    [108] Gayet J F, Crepel O, Fournol J F, et al. A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part II: Preliminary tests[J]. Annales Geophysicae, 1997, 15(13): 460-470.

    [109] Kaller W. A new polar nephelometer for measurement of atmospheric aerosol[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 87(32): 107-117.

    [110] Castagner J L, Bigio I J. Polar nephelometer based on a rotational confocal imaging setup[J]. Applied Optics, 2006, 45(10): 2232-2239.

    [111] Castagner J L, Bigio I J. Particle sizing with a fast polar nephelometer[J]. Applied Optics, 2007, 46(4): 527-532.

    [112] Curtis D B, Aycibina M, Young M A, et al. Simultaneous measurement of light-scattering properties and particle size distribution for aerosols application to ammonium sulfate and quartz aerosol particles[J]. Atmospheric Environment, 2007, 41: 4748-4758.

    [113] Curtis D B, Meland B, Aycibin M. A laboratory investigation of light scattering from representative components of mineral dust aerosol at a wavelength of 550 nm[J]. Journal of Geophysical Research, 2008, 113: D08210.

    [114] Wang Y, Chakrabarti A, Sorensen C M. A light-scattering study of the scattering matrix elements of Arizona Road Dust[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 163: 72-79.

    [115] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles[M]. New York: John Wiley& Sons Inc., 1983.

    [116] Greenberg J M, Pedersen N E, Pedersen J C. Microwave analog to the scattering of light by nonspherical particles[J]. Journal of Applied Physics, 1961, 32(2): 233-242.

    [117] Gustafson B  S. Microwave analog to light scattering measurements: A modern implementation of a proven method to achieve precise control[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 55(5): 663-672.

    [118] Waterman P C. Symmetry, unitarity, and geometry in electromagnetic scattering[J]. Physical Review D, 1971, 3(4): 825-839.

    [119] Zerull R H, Giese R H, Weiss K. Scattering functions of nonspherical dielectric and absorbing particles VS Mie theory (E)[J]. Applied Optics, 1977, 16(4): 777-778.

    [120] Zerull R H. Scattering measurements of dielectric and absorbing nonspherical particles[J]. Beitraege zur Physik der Atmosphaere, 1976, 49: 168-188.

    [121] Allan L E, McCormick G C. Measurements of the backscatter matrix of dielectric spheroids[J]. IEEE Transactions on Antennas and Propagation, 1978, 26: 579-587.

    [122] Greenberg J M, Gustafson B  S. A comet fragment model for zodiacal light particles[J]. Astronomy & Astrophysics, 1979, 11(11): 35-42.

    [123] Schuerman D W, Wang R T, Gustafson B  S, et al. Systematic studies of light scattering. 1: Particle shape[J]. Applied Optics, 1981, 20(23): 4039-4050.

    [124] Wang R T, Greenberg J M, Schuerman D W. Experimental results of dependent light scattering by two spheres[J]. Optics Letters, 1981, 6(11): 543-545.

    [125] Fuller K A, Kattawar G W, Wang R T. Electromagnetic scattering from two dielectric spheres: Further comparisons between theory and experiment[J]. Applied Optics, 1986, 25(15): 2521-2529.

    [126] Chylek P, Srivastava V, Pinnick R G, et al. Scattering of electromagnetic waves by composite spherical particles: Experiment and effective medium approximations[J]. Applied Optics, 1988, 27(12): 2396-2404.

    [127] Hage J I, Greenberg J M, Wang R T. Scattering from arbitrarily shaped particles: Theory and experiment[J]. Applied Optics, 1991, 30(9): 1141-1152.

    [128] Zerull R H, Gustafson B  S, Schulz K, et al. Scattering by aggregates with and without an absorbing mantle: Microwave analog experiments[J]. Applied Optics, 1993, 32(21): 4088-4100.

    [129] Fuller K A, Stephens G L, Jersak B D. Some advances in understanding light scattering by nonspherical particles[C]. th Conference of Atmospheric Radiation, 1994.

    [130] Wang R T, Van de Hulst H C. Application of the exact solution for scattering by an infinite cylinder to the estimation of scattering by a finite cylinder[J]. Applied Optics, 1995, 34(15): 2811-2821.

    CLP Journals

    [1] LI Shichun, HUANG Zuxin, SHI Dongdong, XIN Wenhui, SONG Yuehui, GAO Fei, HUA Dengxin. Investigation on airborne near-infrared polarization lidar for probing supercooled cloud[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 872

    HU Shuai, LIU Lei, LIU Xichuan, GAO Taichang. Progress of measurement techniques of multi-angle scattering properties of atmospheric particles[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 477
    Download Citation