• Photonic Sensors
  • Vol. 12, Issue 1, 23 (2022)
Yifan DUAN1, Yang ZHANG2、*, Fang WANG1, Yuting SUN2, Ming CHEN3, Zhenguo JING2, Qiao WANG2, Mengdi LU2, and Wei PENG2
Author Affiliations
  • 1School of Optoelectronics Engineering and Instrument Science, Dalian University of Technology, Dalian 116000, China
  • 2School of Physics, Dalian University of Technology, Dalian 116000, China
  • 3Hebei Institute for Drug and Medical Device Control, Shijiazhuang 050000, China
  • show less
    DOI: 10.1007/s13320-021-0611-z Cite this Article
    Yifan DUAN, Yang ZHANG, Fang WANG, Yuting SUN, Ming CHEN, Zhenguo JING, Qiao WANG, Mengdi LU, Wei PENG. 4-Mercaptopyridine Modified Fiber Optic Plasmonic Sensor for Sub-nM Mercury (II) Detection[J]. Photonic Sensors, 2022, 12(1): 23 Copy Citation Text show less
    References

    [1] J. G. Wiener, D. P. Krabbenhoft, G. H. Heinz, and A. M. Scheuhammer, “Ecotoxicology of mercury, in: handbook of ecotoxicology,” Handbook of Ecotoxicology, 2003, 2: 439–440.

    [2] W. H. Schroeder and J. Munthe, “Atmospheric environment – an overview,” Atmospheric Environment, 1998, 32(5): 809–822.

    [3] S. E. Lindberg, R. Bullock, R. Ebinghaus, D. Engstrom, X. Feng, W. Fitzgerald, et al., “A synthesis of progress and uncertainties in attributing the sources of mercury in deposition,” Ambio, 2007, 36(1): 19–32.

    [4] G. R. Sheu and R. P. Mason, “An examination of methods for the measurements of reactive gaseous mercury in the atmosphere,” Environmental Science & Technology, 2001, 35(6): 1209–1216.

    [5] M. S. Landis, G. J. Keeler, K. I. Al-Wali, and R. K. Stevens, “Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition,” Atmospheric Environment, 2004, 38(4): 613–622.

    [6] M. Meili, “Fluxes, pools, and turnover of mercury in Swedish forest lakes,” Water Air & Soil Pollution, 1991, 56(1): 719–727.

    [7] O. Lindqvist, K. Johansson, L. Bringmark, B. Timm, M. Aastrup, A. Andersson, et al., “Mercury in the Swedish environment – recent research on causes, consequences and corrective methods,” Water, Air, and Soil Pollution, 1991, 55(1–2): 1–261.

    [8] J. Hua, A. Brun, and M. Berlin, “Pathological changes in the Brown Norway rat cerebellum after mercury vapour exposure,” Toxicology, 1995, 104(1–3): 83–90.

    [9] S. Stine, A. Fredriksson, L. Dencker, and T. Ebendal, “The effect of mercury vapour on cholinergic neurons in the fetal brain: studies on the expression of nerve growth factor and its low- and high-affinity receptors,” Developmental Brain Research, 1995, 85(1): 96–108.

    [10] G. J. Myers and P. W. Davidson, “Prenatal methylmercury exposure and children: neurologic, developmental, and behavioral research,” Environmental Health Perspectives, 1998, 106(3): 841–847.

    [11] M. H. Keating, “Mercury study report to Congress,” Washington D.C.: Office of Air Quality Planning and Standards and Office of Research and Development, 1997.

    [12] IPCS, “International programme on chemical safety, environmental health criteria for methylmercury,” Criteria, 101, 1988.

    [13] L. Barregard, “Biological monitoring of exposure to mercury vapor,” Scandinavian Journal of Work, Environment & Health, 1993, 19(1): 45–49.

    [14] M. M. Veiga, R. F. Baker, M. B. Fried, and D. Withers, “Protocols for environmental and health assessment of mercury released by artisanal and small-scale gold miners (ASM),” Vienna: United Nations Industrial Development Organization, 2003.

    [15] E. Rojas, L. A. Herrear, L. A. Poirier, and P. Ostrosky-Wegman, “Are metals dietary carcinogens-,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1999, 443(1–2): 157–181.

    [16] T. Kosatsky, R. Przybysz, B. Shatenstein, J. P. Weber, and B. Armstrong, “Fish consumption and contaminant exposure among Montreal-area sportfishers: pilot study,” Environmental Research, 1999, 80(2): S150–S158.

    [17] L. A. Chapman and H. M. Chan, “Inorganic mercury pre-exposures protect against methyl mercury toxicity in NSC-34 (neuron×spinal cord hybrid) cells,” Toxicology, 1999, 132(2–3): 167–178.

    [18] K. Kramer, J. T. Zoelle, and C. D. Klaassen, “Induction of metallothionein mRNA and proteinin primary murine neuron cultures,” Toxicology and Applied Pharmacology, 1996, 141(1): 1–7.

    [19] T. Thompson, J. Fawell, S. Kunikane, D. Jackson, S. Appleyard, P. Callan, et al., “Chemical safety of drinking water: assessing priorities for risk management,” Geneva: World Health Organization, 2007.

    [20] Q. L. Zhang, Y. N. Ni, and S. Kokot, “The use of DNA self-assembled gold nano-rods for novel analysis of lead and/or mercury in drinking water,” Analytical Methods, 2015, 7(11): 4514–4520.

    [21] M. H. Lu, R. Xiao, X. N. Zhang, J. H. Niu, X. T. Zhang, and Y. M. Wang, “Novel electrochemical sensing platform for quantitative monitoring of Hg (II) on DNA-assembled graphene oxide with target recycling,” Biosensors & Bioelectronics, 2016, 85(15): 267–271.

    [22] J. Juárez-Gómez, E. S. Rosas-Tate, G. Roa-Morales, P. Balderas-Hernández, M. Romero-Romo, and M. T. Ramírez-Silva, “Laccase inhibition by mercury: kinetics, inhibition mechanism, and preliminary application in the spectrophotometric quantification of mercury ions,” Journal of Chemistry, 2018, 2018: 1–7.

    [23] T. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Optics & Laser Technology, 2016, 78: 19–33.

    [24] C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Optics Express, 2015, 23(3): 2918–2932.

    [25] C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Analytical and Bioanalytical Chemistry, 2015, 407(14): 3883–3897.

    [26] J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser & Photonics Reviews, 2013, 7(1): 83–108.

    [27] Y. Zhao, Q. Wang, and H. Huang, “Characteristics and applications of tilted fiber Bragg gratings,” Journal of Optoelectronics and Advanced Materials, 2010, 12(12): 2343–2354.

    [28] X. Y. Dong, H. Zhang, B. Liu, and Y. P. Miao, “Tilted fiber Bragging gratings: principle and sensing applications,” Photonic Sensors, 2011, 1(1): 6–30.

    [29] L. Guerrini, I. Rodriguez-Loureiro, M. A. Correa-Duarte, Y. H. Lee, X. Y. Ling, F. J. Garcia de Abajo, et al., “Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic and methyl-mercury in water,” Nanoscale, 2014, 6(14): 8368–8375.

    [30] K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and characterization of Au colloid monolayers,” Analytical Chemistry, 1995, 67(4): 735–743.

    [31] M. Lu, L. Hong, Y. Liang, B. Charron, H. Zhu, W. Peng, et al., “Enhancement of gold nanoparticle coupling with a 2D plasmonic crystal at high incidence angles,” Analytical Chemistry, 2018, 90(11): 6683–6692.

    [32] C. Shen, W. Zhou, and J. Albert, “Polarization-resolved evanescent wave scattering from gold-coated tilted fiber gratings,” Optics Express, 2014, 22(5): 5277–5282.

    [33] D. Feng, W. Zhou, X. Qiao, and J. Albert, “High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings,” Optics Express, 2016, 24(15): 16456–16464.

    [34] S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosensors and Bioelectronics, 2014, 52: 337–344.

    [35] H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, et al., “Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing,” ACS Sensors, 2019, 4(3): 704–710.

    [36] S. Jia, B. Chao, J. Z. Sun, J. H. Tong, and S. H. Xia, “A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury (II) ion by gold nanoparticles-DNA conjugates,” Biosensors and Bioelectronics, 2018, 114: 15–21.

    Yifan DUAN, Yang ZHANG, Fang WANG, Yuting SUN, Ming CHEN, Zhenguo JING, Qiao WANG, Mengdi LU, Wei PENG. 4-Mercaptopyridine Modified Fiber Optic Plasmonic Sensor for Sub-nM Mercury (II) Detection[J]. Photonic Sensors, 2022, 12(1): 23
    Download Citation