• Laser & Optoelectronics Progress
  • Vol. 52, Issue 2, 20001 (2015)
Peng Yapei1、2、*, Jiang Benxue1, Fan Jintai1, Yuan Xinqiang1, and Zhang Long1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop52.020001 Cite this Article Set citation alerts
    Peng Yapei, Jiang Benxue, Fan Jintai, Yuan Xinqiang, Zhang Long. Review of in Mid-Infrared Laser Materials Directly Pumped by Laser-Diode[J]. Laser & Optoelectronics Progress, 2015, 52(2): 20001 Copy Citation Text show less
    References

    [1] Wang Ying, Luo Zhengqian, Xiong Fengfu, et al.. Numerical optimization of 3~5 μm mid-infrared ZBLAN fiber Raman lasers[J]. Laser & Optoelectronics Progress, 2014, 51(6): 061405.

    [2] M Ebrahim-Zadeh, I T Sorokina. Mid-Infrared Coherent Sources and Applications[M]. Springer, 2005.

    [3] P B Corkum. Plasma perspective on strong field multiphoton ionization[J]. Phys Rev Lett, 1993, 71(13): 1994~1997.

    [4] V S Yakovlev, M Ivanov, F Krausz. Enhanced phase-matching for generation of soft X-ray harmonics and attosecond pulses in atomic gases[J]. Opt Express, 2007, 15(23): 15351-15364.

    [5] A Godard, Infrared (2~12 mm) solid-state laser sources: a review[J]. C R Physique, 2007, 8: 1100-1128.

    [6] S Mirov, V Fedorov, I Moskalev, et al.. Frontiers of mid- infrared lasers based on transition metal doped II- VI semiconductors[J]. J Luminescence, 2013, 133: 268-275.

    [7] S Mirov, V Fedorov, I Moskalev, et al.. Progress in Cr2 + and Fe2 + doped mid-IR laser materials[J]. Laser & Photon Rev, 2010, 4: 21-41.

    [8] I T Sorokina. Cr2+-doped II–VI materials for lasers and nonlinear optics[J]. Opt Mater, 2004, 26(4): 395-412.

    [9] Huang Lilei. The optical properties of Ce3+, Er3+ codoped YAG crystal[J] J China Institute of Metrology, 1998, 1: 15-18.

    [10] Bao Liangbi, Ye Bing. Study of Er:YAG laser and its applications[J]. J Hefei University of Thchnology, 2001, 24: 23-27.

    [11] F F Huang, Y Y Ma, W W Li, et al.. 2.7 μm emssion of high thermally and chemically durable glasses based on AlF3[J]. Sci Rep, 2014, 4: 3607.

    [12] T Y Fan, G Huber, R L Byer, et al.. Spectroscopy and diode laser- pumped operation of Tm, Ho- YAG[J]. IEEE J Quantum Electronics, 1988, 24(6): 924-933.

    [13] N P Barnes, E D Filer, F L Naranjo, et al.. Spectroscopic and lasing properties of Ho:Tm:LuAG[J]. Opt Lett, 1993, 18(9): 708-710.

    [14] K Scholle, E Heumann, G Huber. Single mode Tm and Tm.Ho:LuAG lasers for LIDAR applications[J]. Laser Physics Lett, 2004, 1(6): 285-290.

    [15] R Reisfeld, C Jorgensen. Excited State Phenomena in Vitreous Materials[M]. Handbook on the Physics and Chemistry of Rare Earths, 1987, 9: 1-91.

    [16] S H Liu. Electronic Structure of Rare Earth Metals[M]. Handbook on the Physics and Chemistry of Rare Earths, 1978, 1: 233-335.

    [17] B J Beaudry, Jr K A. Gschneidner, Preparetion and Basic Properties of the Rare Earth Metals[M]. Handbook on the Physics and Chemistry of Rare Earths, 1978, 1: 173-232.

    [18] Xia Shangda. Research progress on theory of rare-earth luminescence and spectroscory[J]. Chinese J Luminescence, 2007, 28(4): 465-478.

    [19] Jiang Zhonghong. New Light Function of Glass[M]. Beijing: Chemical Industry Press, 2008.

    [20] G C Ferrari, M Ferrari. Photoluminescence of rare-earth-doped glasses[J]. Rivista Del Nuovo Cimento, 2005, 28(12): 10010-10062.

    [21] Yin Min, Wen Jun, Duan Changkui. Transition selection rules of rare- earth in optical materials[J]. Chinese J Luminescence, 2011, 32(7): 643-649.

    [22] Xu Xurong, Su Mianzeng. Luminescence and Luminescence Materials[M]. Beijing: Chemical Industry Press, 2004.

    [23] Gan Fuxi. Optics and Optical Properties of Glass[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1991.

    [24] R M El-Agmy, N M Al-Hosiny. 2.31 μm laser under up-conversion pumping at 1.064 μm in Tm3 + :ZBLAN fibre lasers [J]. Electron Lett, 2010, 46(13): 1248-1249.

    [25] W T Carnall, P R Fields, K Rajnak. Electronic energy levels in the thrivalent lanthanide aquo ions. 1. Pr3 + , Nd3 + , Pm3 + , Sm3+, Dy3+, Ho3+, Er3+, and Tm3+[J]. J Chem Phys, 1968, 49(10): 4424-4442.

    [26] K Zhao, L X Yu, B Q Yao, et al.. Room temperature diode-pumped 1875.1 nm Tm:GdVO4 laser[J]. Laser Physics, 2012, 22(4): 664-667.

    [27] B Walsh, N Barnes, D Reichle, et al.. Optical properties of Tm3 + ions in alkali germanate glass[J]. Journal of Non-Crystalline Solids, 2006, 352(50-51): 5344-5352.

    [28] R Allen, L Esterowitz, CW diode pumped 2.3 μm fiber laser[J]. Appl Phys Lett, 1989, 55(8): 721-722.

    [29] J Y Allain, M Monerie, H Poignant. Tunable CW lasing around 0.82,1.48, 1.88, and 2.35 μm in thulium- doped fluorozirconate fibre[J]. Electron Lett, 1989, 25(24): 1660-1662.

    [30] B Richards, Y Tsang, D Binks, et al.. Efficient 2 μm Tm3+ dopoed tellurite fiber laser[J]. Opt Lett, 2008, 33(4): 402-404.

    [31] J N Carter, R G Smart, A C Tropper, et al.. Thulium- doped fluorozirconate fibre lasers[J]. J Non- Cryst Solids, 1992, 140: 10-15.

    [32] H Ebendorff-Heidepriem, D G Lancaster, K Kuan, et al.. Extruded fluoride fiber for 2.3 μm laser application[C]. 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO), 2011. 621.

    [33] F J Mcaleavey, B D Maccraith, J O′ Gorman, et al.. Tunable and efficient diode- pumped Tm3 +- doped fluoride fiber laser for hydrocabon gas sensing[J]. Fiber and Integrated Optics, 1997, 16: 355-368.

    [34] Xiong Wang, Pu Zhou, Hanwei Zhang, et al.. 100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers [J]. Opt Lett, 2014, 39(5): 4329-4331.

    [35] Erik Lucas, Laurent Lombard, Yves Jaouen, et al.. 1 kW peak power, 110 ns single- frequency thulium doped fiber amplifier at 2050 nm[J]. Appl Opt, 2014, 53(20): 4413-4419.

    [36] D F de Sousa, L F C Zonetti, M J V Bell, et al.. On the observation of 2.8 μm emission from diode- pumped Er3 + and Yb3+-doped low silica calcium aluminate glasses[J]. Appl Phys Lett, 1999, 74(7): 908-910.

    [37] G J Kintz, R Allen, L Esterowitz. CW and pulsed 2.8 μm laser emission from diode- pumped Er3 + :LiYF4 at room temperature[J]. Appl Phys Lett, 1987, 50: 1553-1555.

    [38] M C Brierley, P W France. Continuous wave lasing at 2.7 μm in an erbium doped fluorozirconate fibre[J]. Electron Lett, 1988, 24(15): 935-937.

    [39] S A Pollack, M Robinson. Laser emission of Er3+ in ZrF4-based fluoride glass[J]. Electron Lett, 1988, 24(6): 320-322.

    [40] J Y Allain, M Monerie, H Poignant. Erbium- doped fluorozirconate single- mode fibre lasing at 2.71 μm [J]. Electron Lett, 1989, 25(1): 28-29.

    [41] M Pollnau, S D Jackson. Mid-Infrared Coherent Sources and Applications: Advances in Mid-Infrared Fiber Lasers[M]. M Ebrahim-Zadeh and I.T. Sorokina (Eds.) Barcelona, 2008. 315-346.

    [42] M Pollnau. Analysis of heat generation and thermal lensing in Erbium 3 μm lasers[J]. IEEE J Quant Electron, 2003, 39(2): 350-357.

    [43] M Pollnau, S D Jackson. Energy recycling versus lifetime quenching in erbium- doped 3 μm fiber laser[J]. IEEE J Quant Electron, 2002, 38(2): 162-169.

    [44] M Pollnau, S D Jackson. Erbium 3 μm fiber lasers[J]. IEEE J Selected Topics in Quantum Electron, 2001, 7(1): 30-40.

    [45] P S Golding, S D Jackson, T A King, et al.. Energy transfer processes in Er3 +- doped and Er3 + , Pr3 +- codoped ZBLAN glasses[J]. Phys Rev B, 2000, 62(2): 856-864.

    [46] S D Jackson, T A King, M Pollnau. Diode-pumped 1.7-W erbium 3- μm fiber laser[J]. Opt Lett, 1999, 24(16): 1133-1135.

    [47] M Pollnau, C Ghisler, G Bunea, et al.. 150 mW unsaturated output power at 3 μm from a single- mode- fiber erbium cascade laser[J]. Appl Phys Lett, 1995, 66(26): 3564-3566.

    [48] S D Jackson, M Pollnau, J Li. Diode pumped erbium cascade fiber lasers[J]. IEEE J Quant Electron, 2011, 47(4): 471-478.

    [49] S Tokita, M Murakami, S Shimizu, et al.. Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser[J]. Opt Lett, 2009, 34(20): 3062-3064.

    [50] X Zhu, R Jain. 10-W-level diode pumped compact 2.78 μm ZBLAN fiber laser[J]. Opt Lett, 2007, 32(1): 26-28.

    [51] J Li, S D Jackson. Theoretical study and optimization of a high power mid-infrared erbium-doped ZBLAN fibre laser [J]. Chin Phys B, 2011, 20(3): 034205.

    [52] D Faucher, M Bernier, G Androz, et al.. 20 W passively cooled single- mode all- fiber laser at 2.8 μm [J]. Opt Lett, 2011, 36(7): 1104-1106.

    [53] Yanlong Shen, Ke Huang, Feng Zhu, et al.. Laser diode- pumped watt- level single mode heavily erbium- doped midinfrared fiber laser[J]. Acta Photonica Sinica, 2014, 43(3): 0314002.

    [54] L Wetenkamp. Efficient cw operation of a 2.9 μm Ho3 + doped fluorozirconate fibre laser pumped at 640 nm[J]. Electron Lett, 1990, 26(13): 883-884.

    [55] S D Jackson. Mid infrared holmium fiber lasers[J]. IEEE J Quantum Electron, 2006, 42(2): 187-191.

    [56] T Sumiyoshi, H Sekita. Dual-wavelength continuous-wave cascade oscillation at 3 and 2 μm with a holmium-doped fluoride-glass fiber laser[J]. Opt Lett, 1998, 23(23): 1837-1839.

    [57] J Li, T Hu, S D Jackson. Dual wavelength Q-switched cascade laser[J]. Opt Lett, 2012, 37(12): 2208-2210.

    [58] S D Jackson. Single- transcers- mode 2.5 W holmium- doped fluoride fiber laser operating at 2.86 μm [J]. Opt Lett, 2004, 29(4): 334-336.

    [59] T Hu, D D Hudson, S D Jackson. Actively Q-switched 2.9 μm Ho3+ Pr3+doped fluoride fiber laser[J]. Opt Lett, 2012, 37(16): 2145-2146.

    [60] D Hudson, E Magi, L Gomes, et al.. 1 W diode-pimped tunable Ho3 + , Pr3 +-doped fluoride glass fibre laser[J]. Electron Lett, 2011, 47(17): 985-986.

    [61] D V Talavera, E B Mejía. Holmium-doped fluoride fiber laser at 2950 nm pumped at 1175 nm[J]. Laser Phys, 2006, 16(3): 436-440.

    [62] S D Jackson. Singly Ho3+ doped fluoride fibre laser operating at 2.92 μm [J]. Electron Lett, 2004, 40(22): 1400-1401.

    [63] J Schneider. Fluoride fibre laser operating at 3.9 μm [J]. Electron Lett, 1995, 31(15): 1250-1251.

    [64] J Schneider. Properties of a fluoride fiber laser operating at 3.9 μm [C]. SPIE, 1996, 2841: 230-236.

    [65] Y Tsang, A E El-Taher, T A King, et al.. Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 μm [J]. Opt Express, 2006, 14(2): 678-685.

    [66] M Jayasimhadri, L R Moorthy, K Kojima, et al.. Optical properties of Dy3 + ions in alkali tellurofluorophosphate glasses for laser materials[J]. J Phys D: Appl Phys, 2006, 39: 635-641.

    [67] Y Tsang, A E El-Taher. Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at -1.1 μm by an Yb fiber laser[J]. Laser Phys Lett, 2011, 8(11): 818-822.

    [68] S Sugano, Tanabe, H Kamimura. Multiples of Transition-Metal Ions in Crystal[M]. New York: Academic Press, 1970.

    [69] A Fazzio, M J Caldas, A Zunger. Many- electron multiplet effects in the spectra of 3d- impurities in heteropolar semiconductors[J]. Phys Rev B, 1984, 30(6): 3430.

    [70] H A Weakliem. Optical spectra of Ni2+, Co2+, and Cu2+ in tetrahedral sites in crystals[J]. J Chem Phys, 1962, 36: 2117-2140.

    [71] P Koidl, O F Schirmer, U Kaufmann. Near- infrared absorption of Co2 + in ZnS: Weak Jahn- Teller coupling in the 4T2 and 4T1 states[J]. Phys Rev B, 1973, 8: 4926-4934.

    [72] L D Deloach, R H Page, G D Wilke, et al.. Transition metal- doped zinc chalcogenides: spectrocopy and laser demonstration of a new class of gain media[J]. IEEE J Quantum Electron, 1996, 32(6): 885-895.

    [73] T J Carrig, G J Wagner. Alphan Sennaroglu, et al.. Mode-locked Cr2+:ZnSe laser[J]. Opt Lett, 2000, 25(3): 168-170.

    [74] I T Sorokina, E Sorokin, A D Lieto, et al.. Efficient borodly tunable continuous-wave Cr2+ :ZnSe laser[J]. J Opt Soc Am B, 2001, 18(7): 926-930.

    [75] S B Mirov, V V Fedorov, K Graham, et al.. Erbium fiber laser-pumped continuous-wave microchip Cr2 + :ZnS and Cr2 + :ZnSe laser[J]. Opt Lett, 2002, 27: 909-911.

    [76] I T Sorokina, E Sorokin, S Mirov, et al.. Broadly tunable compact continuous-wave Cr2+:ZnS laser[J]. Opt Lett, 2002, 27(12): 1040-1042.

    [77] E Sorokin, I T Sorokina. Tunable diode- pumped continuous- wave Cr2 + :ZnSe laser[J]. Appl Phys Lett, 2002, 80(18): 3289-3291.

    [78] B Segall, T F Marpled, B Physics. Chemistry of II- IV Compounds[M]. Aven M, Prener J. S. (Eds.) New York: Wiley, 1967. 319-381.

    [79] G A Slack. Thermal conductivity of II-VI compounds and phonon scattering by Fe2+ impurities[J]. Phys Rev B, 1972, 6: 3791-3800.

    [80] I T Sorokina, E Sorokin, S Mirov, et al.. Continuous-wave tunble Cr2+:ZnS laser[J]. Appl Phys B, 2002, 74(6): 607-611.

    [81] J McKay, K L Schepler, G C Catella. Efficient grating- tuned mid- infrared Cr2 + :CdSe laser[J]. Opt Lett, 1999, 24(2): 1575-1577.

    [82] U Hommerich, X Wu, V R Davis, et al.. Demonstration of room temperature laser action at 2.5 μm from Cr2+:Cd0.85Mn0.15Te[J]. Opt Lett, 1997, 22(15): 1180-1182.

    [83] U Hommerich. Study of the environment of Cr in ZnSe using excited X- ray absorption fine structure and optical sectroscopy[J]. J Lumin, 2000, 87-89: 1143-1145.

    [84] S I Klokishner, B S Tsukerblat, O S Reu, et al.. Jahn – Teller vibronic coupling in CdSe doped with Cr2 + ions[J]. Opt Mater, 2005, 27(8): 1445-1450.

    [85] I T Sorokina, E Sorokin, A Di Lieto, et al.. Efficient broadly tunable continuous- wave Cr2 + :ZnSe laser[J]. J Opt Soc Am B, 2001, 18: 926-930.

    [86] G J Wagner, T J Carrig, R H Page, et al.. Continuous-wave broadly tunable Cr2+:ZnSe laser[J]. Opt Lett, 1999, 24(1): 19-21.

    [87] A V Podlipensky, V G Shcherbitsky, N V Kuleshov, et al.. Efficient laser operation and continuous- wave diode pumping of Cr2+:ZnSe single crystals[J]. Appl Phys B, 2001, 72(2): 253-255.

    [88] M Mond, D Albrecht, H M Kretschmann, et al.. Er doped fiber amplifier pumped Cr2 + :ZnSe laser[J]. Phys Stat Sol (a), 2001, 188(4): R3-R5.

    [89] M Mond, D Albrecht, E Heumann, et al.. 1.9- μm and 2.0- μm laser diode pumping of Cr2 + :ZnSe and Cr2 + :CdMnTe[J]. Opt Lett, 2002, 27(12): 1034-1036.

    [90] E Sorokin, N Tolstik, I T Sorokina. 1 Watt femtosecond mid-IR Cr:ZnS laser[C]. SPIE, 2013, 8599: 859916.

    [91] Z Y Chen, B Q Yao, Y Q Du, et al.. A Cr:ZnS saturable absorber for a Tm:YLF pumped passively Q- switched Ho:YAG laser[J]. Laser Phys Lett, 2013, 10(10): 105001.

    [92] A V Podlipensky, V G Shcherbitsky, N V Kuleshov, et al.. Cr2 + :ZnSe and Co2 + :ZnSe saturable- absorber Q switches for 1.54- μm Er:glass lasers[J]. Opt Lett, 1999, 24(14): 960-962.

    [93] R D Stultz, V Leyva, K Spariosu. Short pulse, high-repetition rate, passively Q-switched Er:yttrium-aluminum-garnet laser at 1.6 microns[J]. Appl Phys Lett, 2005, 87(24): 241118.

    [94] R Renz, H J Schulz. Temperature dependence of the lifetime of excited states for 3d transition element centers in IIVI crystals[J]. J Lumin, 1981, 24/25: 221-224.

    [95] G Goetz, H J Schulz. Decay of internal luminescence transitions of 3d impurities in II- VI compounds- recent experiments and refined interpretations[J]. J Lumin, 1988, 40/41: 415-416.

    [96] L D DeLoach, R H Page, G D Wilke, et al.. Transition metal- doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media[J]. IEEE J Quantum Electron, 1996, 32(6): 885-895.

    [97] A Burger, K Chattopadhyay, J O Ndap, et al.. Preparation conditions of chromium doped ZnSe and their infrared luminescence properties[J]. J Crystal Growth, 2001, 225(2-4): 249-256.

    [98] A Sennaroglu, U Demirbas, A Kurt, et al.. Concentration dependence of fluorescenceand lasing efficiency in Cr2 + :ZnSe lasers[J]. Opt Mater, 2007, 29: 703-708.

    [99] V E Kisel, V G Shcherbitsky, N V Kuleshov, et al.. Luminescence lifetime measurements in diffusion doped Cr:ZnSe[C]. ECLEO, 2003.

    [100] A L Schawlow, C H Townes. Infrared and optical masers[J]. Phys Rev, 1958, 112(6): 1940-1949.

    [101] T H Maiman. Stimulated optical radiation in ruby[J]. Nature, 1960, 187: 493-494.

    [102] T H Maiman, R H Hoskins, I H D′ Haenens, et al.. Spectroscopy and stimulated emission in ruby[J]. Phys Rev, 1960, 123: 1151.

    [103] Z J Kiss, R C Duncan, Pulsed and continuous optical maser action in CaF2 :Dy2+[C]. Proc IRE, 1962, 50: 1531-1532.

    [104] A Yariv. Continuous operation of a CaF2:Dy2+ optical maser[C]. Proc IRE, 1962, 50: 1699.

    [105] A A Kaminskii, L S Kornienko, A M Prokhorov. Continuous solar laser using Dy2 + in CaF2[J]. Dokl Akad Nauk SSSR, 1965, 161: 1063-1064.

    [106] Y K Voron′ko, A A Kaminskii, V V Osiko, et al.. A new type of crystal for optically pumped lasers[J]. Izv Akad Nauk SSSR, Neorg Mater 1966, 2: 1161-1170. [English transl. Inorg. Mater. (USSR) 991-998 (1966)].

    [107] E Sorokin, M H Ober, I Sorokina, et al.. Femtosecond solid-state lasers using Nd3+-doped mixed scandium garnets[J]. J Opt Soc Am B, 1993, 10(8): 1436-1442.

    [108] L F Johnson, R E Dietz, H J Guggenheim. Optical maser oscillation from Ni2+ in MgF2 involving simultaneous emission of phonons[J]. Phys Rev Lett, 1963, 11(7): 318-320.

    [109] L F Johnson, R E Dietz, H J Guggenheim. Spontaneous and stimulated emission from Co2 + ions in MgF2 and ZnF2[J]. Appl Phys Lett, 1964, 5(2): 21-22.

    [110] L F Johnson, H J Guggenheim, R A Thomas. Phonon terminated optical masers[J]. Phys Rev, 1966, 149(1): 179-185.

    [111] L F Johnson, H J Guggenheim, D H Bahnck. Phonon terminated laser emission from Ni2 + ions in KMgF3[J]. Opt Lett, 1983, 8(7): 371-373.

    [112] P F Moulton, A Mooradian. Broadly tunable CW operation of Ni:MgF2 and Co:MgF2 lasers[J]. Appl Phys Lett, 1971, 35(11): 838-840.

    [113] P F Moulton, A Mooradian, T B Reed. Efficient CW optically pumped Ni:MgF2 laser[J]. Opt Lett, 1978, 3: 164-166.

    [114] L F Johnson, G D Boyd, K Nassau. Optical maser characteristics of Ho3+ in CaWO4[C]. Proc IRE, 1962, 50: 87.

    [115] L F Johnson, G D Boyd, K Nassau. Optical maser characteristics of Tm3+ in CaWO4[C]. Proc IRE, 1962, 50: 86.

    [116] Z J Kiss, R C Duncan. Optical maser action in CaWO4:Er3+[C]. Proc IRE, 1962, 50: 1531.

    [117] R L Byer. Diode laser-pumped solid-state lasers[J]. Science, 1988, 239: 742.

    [118] P F Moulton. Spectroscopic and laser characteristics of Ti:Al2O3[J]. J Opt Soc Am B, 1986, 3(1): 125-133.

    [119] J R C Stoneman, L Esterowitz. Efficient, broadly tunable, laser- pumped Tm:YAG and Tm:YSGG CW lasers[J]. Opt Lett, 1990, 15(9): 486-488.

    [120] J F Pinto, L Esterowitz, G H Rosenblatt. Tm3 + :YLF laser continuously tunable between 2.20 and 2.46 μm[J]. Opt Lett, 1994, 19(12): 883-885.

    [121] G Huber, E W Duczynski, K Petermann. Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature[J]. IEEE J Quantum Electron, 1988, 24(5): 920-923.

    [122] T Y Fan, G Huber, R L Byer, et al.. Spectroscopy and diode laser- pumped operation of Tm, Ho:YAG[J]. IEEE J Quantum Electron, 1988, 24(6): 924-933.

    [123] K L Vodop′ yanov, L A Kulevskii, P P Pashinin, et al.. Bandwidth- limited picosecond pulses from a YSGG:Cr3 + :Er3 + laser ( λ =2.79 μm ) with active mode locking[J]. Kvant Elektron, 1987, 14:1219~24 [English transl Sov J Quantum Electron, 17, 776-779 (1987)].

    [124] E Sorokin, I T Sorokina, A Unterhuber, et al.. A novel CW tunable and mode- locked 2 μm Cr, Tm, Ho:YSGG:GSAG laser[J]. OSA Trends Opt. Photonics 1998, 19: 197-200.

    [125] R H Page, L D DeLoach, G D Wilke, et al.. Cr2+-doped II–VI crystals: new widely tunable, room-temperature mid-IR lasers[C]. Proc IEEE 8th Lasers and Electro-Optics Society 1995, 449-450.

    [126] R H Page, K I Schaffers, L D DeLoach, et al.. Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers[J]. IEEE J Quantum Electron, 1997, 33(4): 609-619.

    [127] C Ghisler, W Luthy, H P Weber, et al.. A Tm3 + sensitized Ho3 + silica fibre laser at 2.04 μm pumped at 809 nm[J]. Opt Commun, 1994, 109(3-4): 279-281.

    [128] P Myslinski, J Chrostowski, J A K Koningstein, et al.. Self-mode locking in a Q-switched erbium-doped fiber laser[J]. Appl Opt, 1993, 32(3): 286-290.

    [129] P F Moulton, G A Rines, E V Slobodatchikov, et al.. Tm- doped fiber lasers: fundamentals and power scaling[J]. J Selected Topics in Quantum Electronics, 2009, 15(1): 85-92.

    [130] Xueqiang Liu, Xin Wang, Longfei Wang, et al.. Realization of 2 μm laser output in Tm3 +- doped lead silicate double cladding fiber[J]. Materials Letters, 2014, 125(15): 12-14.

    [131] S D Jackson. 2.7-W Ho3 + -doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm [J]. Applied Physics B: Lasers and Optics, 2003, 76(7): 793-795.

    [132] A S Kurkov, E M Dianov, O I Mcdvedkov, et al.. Efficient silica- based Ho3 + fibre laser for 2 μm spectral region pumped at 1.15 μm [J]. Electron Lett, 2000, 36(12): 1015-1016.

    [133] Xiong Wang, Pu Zhou, Yu Miao, et al.. High power, compact, passively Q- switched Ho- doped fiber laser tandem pumped by a 1150 nm Raman fiber laser[J]. Laser Phys Lett, 2014, 11(9): 095101.

    [134] R M Percival, D Szebesta, S T Davey. Highly efficient and tuanble operation of two colour Tm- doped fluoride fiber laser[J]. Electron Lett, 1992, 28(7): 671-673.

    [135] S D Jackson. 8.8 W diode-cladding-pumped Tm3+, Ho3+-doped fluoride fibre laser[J]. Electron Lett, 2001, 37(13): 821-822.

    [136] M Eichhorn, S D Jackson. Comparative study of continuous wave Tm3 +- doped silica and fluoride fiber laser[J]. Applied Physics B, 2008, 90(1): 35-41.

    [137] X Zhu, N Peyghambarian. High-power ZBLAN glass fiber lasers: review and prospect[J]. Advances in Optoelectronics, 2010, 2010: 501956.

    [138] Jianfeng Li, Hongyu Luo, Yulian He, et al.. Semiconductor saturable absorber mirror passively Q- switched 2.97 μm fluoride fiber laser[J]. Laser Phys Lett, 2014, 11(6): 065102.

    [139] Chen Wei, Xiushan Zhu, Wang F, et al.. Graphene Q- switched 2.78 μm Er3 +- doped fluoride fiber laser[J]. Opt Lett, 2013, 38(17): 3233-3236.

    [140] J Wu, S Jiang, T Luo, et al.. Efficient thulium-doped 2- μm germanate fiber laser[J]. Photon Technol Lett, 2006, 18(2): 334-336.

    [141] J Wu, Z Yao, J Zong, et al.. Highly efficient high-power thulium-doped germanate glass fiber laser[J]. Opt Lett, 2007, 32(6): 638-640.

    [142] J Geng, J Wu, S Jiang, et al.. Efficient operation of diode- pumped single- frequency thulium- doped fiber lasers near 2 μm [J]. Opt Lett, 2007, 32(4): 355-357.

    [143] F Fusari, R R Thomson, G Jose, et al.. Ultrafast laser inscribed Tm3 + :germanate glass waveguide laser at 1.9 μm [C]. CLEO/QELS, 2010. CTuU5.

    [144] W Shi, E B Petersen, N Moor, et al.. Single frequency actively Q-switched 2 μm fiber laser by using highly Tm-doped germanate fiber[C]. CLEO. 2011, CThDD6.

    [145] Q Fang, W Shi, K Kieu, et al.. High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers experiment and modeling[J]. Opt Express, 2012, 20(15): 16410-16420.

    [146] Xiaokang Fan, Peiwen Kuan, Kefeng Li, et al.. A 2 μm continuous wave and passively Q- switched fiber laser in thulium-doped germanate glass fibers[J]. Laser Phys, 2014, 24: 085107.

    [147] B Richards, Y Tsang, D Binks, et al.. Efficient 2 μm Tm3+dopoed tellurite fiber laser[J]. Opt Lett, 2008, 33(4): 402-404.

    [148] Y Tsang, B Richards, D Binks, et al.. Tm3+/Ho3+ codoped tellurite fiber laser[J]. Opt Lett, 2008, 33(11): 1282-1284.

    [149] K Li, G Zhang, L Hu. Watt-level - 2 μm laser output in Tm3 +-doped tungsten tellurite glass double-cladding fiber[J]. Opt Lett, 2010, 35(24): 4136-4138.

    [150] K Li, G Zhang, X Wang, et al.. Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite single mode fiber laser[J]. Opt Express, 2012, 20(9): 10115-10121.

    [151] L F Johnson, J E Geusic, L G Van Uitert. Efficient, high-power coherent emission from Ho3+ ions in yttrium alluminum garnet, assisted by energy transfer[J]. Appl Phys Lett, 1966, 8(8): 200-202.

    [152] E P Chicklis, C S Naiman, R C Folweiler, et al.. High- efficiency room- temperature 2.06 μm laser using sensitized Ho3+:YLF[J]. Appl Phys Lett, 1971, 19(4): 119-121.

    [153] E W Duczynski, G Huber, V G Ostroumov, et al.. CW double cross pumping of the5I7-5I8 laser transition in Ho3 + doped garnets[J]. Appl Phys Lett, 1986, 48(23): 1562-1563.

    [154] T Y Fan, G Huber, R L Byer, et al.. Continuous- wave operation at 2.1 μm of a diode- laser- pumped, Tm- sensitized Ho:Y3Al5O12 laser at 300 K[J]. Opt Lett, 1987, 12(9): 678-680.

    [155] T Y Fan, G Huber, R L Byer, et al.. Spectroscopy and diode laser- pumped operation of Tm,Ho:YAG[J]. IEEE J Quantum Electron, 1988, 24(6): 924-933.

    [156] H Hemmati. 2.07- μm CW diode-laser-pumped Tm, Ho:YLiF4 room-temperature laser[J]. Opt Lett, 1989, 14(9): 435-437.

    [157] B T Mcguckin, R T Menzies. Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 μm [J]. IEEE J Quantum Electron, 1992, 28(4): 1025-1028.

    [158] C Li, R Moncorge, J C Souriau, et al.. Efficient 2.05 μm room temperature Y2SiO5:Tm3 + CW laser[J]. Opt Commun, 1993, 101(5-6): 356-360.

    [159] K Ohta, H Saito, M Obara. Spectroscopic characterization of Tm3 + :YVO4 crystal as an efficient diode pumped laser source near 2000 nm[J]. J Appl Phys, 1993, 73(7): 3149-3152.

    [160] T Rothacher, W Lüthy, H P Weber. Diode pumping and laser properties of Yb:Ho:YAG[J]. Opt Commun, 1998, 155(1-3): 68-72.

    [161] C P Wyss, W Luthy, H P Weber, et al.. A diode- pumped 1.4- W Tm3 + :GdVO4 microchip laser at 1.9 μm [J]. IEEE J Quantum Electron, 1998, 34(12): 2380-2382.

    [162] B Q Yao, L L Zheng, X M Duan, et al.. Diode-pumped room-temperature continuous waveTm3+ doped Lu2SiO5 laser[J]. Laser Phys Lett, 2008, 5(10): 714-718.

    [163] J Yu, B C Trieu, E A Modlin, et al.. 1 J/pulse Q-switched 2 μm solid-state laser[J]. Opt Lett, 2006, 31(4): 462-464.

    [164] M Robinson, D P Devor. Thermal switchiing of laser emission of Er3 + at 2.69 μm and Tm3 + at 1.86 μm in mixed crystals of CaF2:ErF3:TmF3[J]. Appl Phys Lett, 1967, 10(5): 167-170.

    [165] K S Bagdasarov, V I Zhekor, V A Lobacher, et al.. Steady-state emission from a Y3Al5O12:Er 3+ laser ( λ =2.94 μ , T=300 K) [J]. Soviet J Quantum Electron, 1983, 13(2): 262.

    [166] B J Dinerman, P F Moulton. 3- μm cw laser operations in erbium-doped YSGG, GGG, and YAG[J]. Opt Lett, 1994, 19(15): 1143-1145.

    [167] M Pollnau, R Spring, S Wittwer, et al.. Investigations on the slope efficiency of a pulsed 2.8- μm Er3 + :LiYF4 laser[J]. J Opt Soc Am B, 1997, 14(4): 974-978.

    [168] H J Eichler, J Findeisen, L Baining, et al.. Highly efficient diode-pumped 3- μm Er3 + :BaY2F8 laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(1): 90-94.

    [169] M Pollnau, W Lüthy, H P Weber, et al.. Investigation of diode-pumped 2.8- μm laser performance in Er:BaY2F8[J]. Opt Lett, 1996, 21(1): 48-50.

    [170] C Labbe, J L Doualan, P Camy, et al.. The 2.8 μm laser properties of Er3 + doped CaF2 crystals[J]. Opt Commun, 2002, 209(1-3): 193-199.

    [171] C Ziolek, H Ernst, G F Will, et al.. High-repetition-rate, high-average-power, diode-pumped 2.94 μm Er:YAG laser [J]. Opt Lett, 2001, 26(9): 599-601.

    [172] G J Wagner, T J Carrig. Power scaling of Cr2+:ZnSe lasers[J]. OSA Advanced Solid- State Lasers, 2001, 506.

    [173] T J Carrig, G J Wagner, W J Alford, et al.. Chromium-doped chalcogenide lasers[C]. SPIE, 2004, 5460: 74-83.

    [174] S B Mirov, V V Fedorov, I S Moskalev, et al.. Recent progress in transition-metal doped II-VI mid-IR lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13: 810-822.

    [175] I S Moskalev, V V Fedorov, S B Mirov. 10- Watt, pure continuous- wave, polycry- stalline Cr2 + :ZnS laser[J]. Opt Express, 2009, 17(4): 2048-2056.

    [176] P A Berry, K L Schepler. High- power, widely- tunable Cr2 + :ZnSemaster oscillator power amplifier systems[J]. Opt Express, 2010, 18(14): 15062-15072.

    [177] S B Mirov, V V Fedorov, K Graham, et al.. Erbium fiber laser-pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers [J]. Opt Lett, 2002, 27(11): 909-911.

    [178] I T Sorokina, E Sorokin, S Mirov, et al.. Continuous-wave tunable Cr2+:ZnS laser[J]. Appl Phys B, 2002, 74(6): 607-611.

    [179] Irina T Sorokina, E Sorokin, S Mirov, et al.. Broadly tunable compact continuous- wave Cr2 + :ZnS laser[J]. Opt Lett, 2002, 27(12): 1040-1042.

    [180] Irina T Sorokina, E Sorokin, T J Carrig, et al.. A SESAM passively mode-locked Cr2+:ZnS laser[C]. OSA/ASSP, 2006.

    [181] E Sorokin, I T Sorokina, M S Mirov, et al.. Ultrabroad continuous- wave tuning of ceramic Cr2 + :ZnSe and Cr2 + :ZnS lasers[C]. OSA/ ASSP/LACSEA /LS&C, 2010.

    [182] E Sorokin, N Tolstik, I T Sorokina. Kerr- lens mode- locked Cr2 + :ZnS laser[C]. Lasers, Sources, and Related Photonic Devices Technical Digest, 2012.

    [183] A A Voronov, V I Kozlovsky, Y V Korostelin, et al.. A continuous-wave Fe2+:ZnSe laser[J]. Quantum Electron, 2008, 38 (12): 1113.

    [184] I T Sorokina, E Sorokin, T Carrig. Femtosecond pulse generation from a SESAM mode- locked Cr:ZnSe Laser[C]. CLEO/QELS, 2006.

    [185] M Segura, M Kadankov, X Mateos, et al.. Passive Q-switching of the diode pumped Tm3 + :KLu(WO4)2 laser near 2-μm with Cr2+:ZnS saturable absorbers[J]. Opt Express, 2012, 20(S2): A3394-A3340.

    [186] R Faoro, M Kadankov, D Parisi, et al.. Passively Q-switched Tm:YLF laser[J]. Opt Lett, 2012, 37(9): 1517-1519.

    [187] H Yu, V Petrov, U Griebner, et al.. Compact passively Q-switched diode-pumped Tm:LiLuF4 laser with 1.26 mJ output energy[J]. Opt Lett, 2012, 37(13): 2544-2546.

    [188] X Zhang, X Bao, L Li, et al.. Laser diode end- pumped passively Q- switched Tm,Ho:YLF laser with Cr:ZnS as a saturable absorber[J]. Opt Commun, 2012, 285: 2122-2127.

    [189] J E Williams, V V Fedorov, D V Martyshkin, et al.. Mid- IR laser oscillation in Cr2 + :ZnSe planar waveguide[J]. Opt Express, 2010, 18(25): 25999.

    [190] J R Macdonald, S J Beecher, P A Berry, et al.. Compact mid-infrared Cr:ZnSe channel waveguide laser[J]. Appl Phys Lett, 2013, 102(16): 161110.

    [191] J R Macdonald, S J Beecher, P A Berry, et al.. Efficient mid- infrared Cr:ZnSe channel waveguide laser operating at 2486 nm[J]. Opt Lett, 2013, 38(13): 2194-2196.

    [192] P A Berry, J R Macdonald, S J Beecher, et al.. Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser[J]. Opt Mater Experss, 2013, 3(9): 1250-1258.

    [193] R A Mironov, E V Karaksina, V O Zabezhailov, et al.. Mid-IR luminescence of Cr 2+ :II-VI crystals in chalcogenide glass fibres[J]. Quantum Electron, 2010, 40(9): 828-829.

    CLP Journals

    [1] Sun Xiao, Han Long, Wang Keqiang. Progress in Directly Pumping of Mid-Infrared Solid-State Lasers[J]. Laser & Optoelectronics Progress, 2017, 54(5): 50007

    [2] Liu Zijun, Bian Junyi, Huang Yan, Xu Tiefeng, Wang Xunsi, Dai Shixun. Research Progress on Rare Earth Ions Doped Chalcogenide Fiber for Mid-Infrared Luminescence[J]. Laser & Optoelectronics Progress, 2017, 54(2): 20003

    [3] Jing Yuanyuan, Wang Xiaochao, Qiao Zhi, Li Yurong, Fan Wei. Spectrum Control Based on All-Fiber Multi-Pass Phase Modulation Structure[J]. Collection Of theses on high power laser and plasma physics, 2016, 14(1): 801004

    Peng Yapei, Jiang Benxue, Fan Jintai, Yuan Xinqiang, Zhang Long. Review of in Mid-Infrared Laser Materials Directly Pumped by Laser-Diode[J]. Laser & Optoelectronics Progress, 2015, 52(2): 20001
    Download Citation