• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20211061 (2021)
Xinliang Zhai, Xiaoyan Wu*, Yiwei Sun, Jianhong Shi, and Guihua Zeng
Author Affiliations
  • Centre of Quantum Sensing and Information Processing, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/IRLA20211061 Cite this Article
    Xinliang Zhai, Xiaoyan Wu, Yiwei Sun, Jianhong Shi, Guihua Zeng. Theory and approach of single-pixel imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20211061 Copy Citation Text show less
    References

    [1] Y Bromberg, O Katz, Y Silberberg. Ghost imaging with a single detector. Physical Review A, 79, 053840(2009).

    [2] M F Duarte, M A Davenport, D Takbar, et al. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 25, 83-89(2008).

    [3] P Sen, B Chen, G Garg, et al. Dual photography. ACM Transactions on Graph, 24, 745-755(2005).

    [4] J H Shapiro. Computational ghost imaging. Phyical Review A, 78, 061802(2008).

    [5] M P Edgar, G M Gibson, M J Padgett. Principles and prospects for single-pixel imaging. Nature Photonics, 13, 13-20(2019).

    [6] M J Sun, J M Zhang. Single-pixel imaging and its application in three-dimensional reconstruction. Infrared and Laser Engineering, 48, 0603003(2019).

    [7] M G Graham, D J Steven, J P Miles. Single-pixel imaging 12 years on: A review. Optics Express, 28, 28190-28208(2020).

    [8] F H Catherine, M Roderick, J P Miles, et al. Deep learning for real-time single-pixel video. Scientific Report, 8, 2369(2008).

    [9] W J Jiang, J P Jiao, Y Guo, et al. Single-pixel camera based on a spinning mask. Optics Letters, 46, 4859-4862(2021).

    [10] D Shi, J Huang, F Wang, et al. Enhancing resolution of single-pixel imaging system. Optical Review, 22, 802-808(2015).

    [11] Sen Pradeep. On the relationship between dual photography and classical ghost imaging. arXiv preprint, 1309.3007(2013).

    [12] T B Pittman, Y H Shih, D V Strekalov, et al. Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52, R3429-R3432(1995).

    [13] R S Bennink, S J Bentley, R W Boyd. "Two-photon" coincidence imaging with a classical source. Physical Review Letters, 89, 113601(2002).

    [14] A Gatti, E Brambilla, M Bache, et al. Correlated imaging: quantum and classical. Physical Review A, 70, 13801-13802(2004).

    [15] A Valencia, G Scarcelli, Angelo M D', et al. Two-photon imaging with thermal light. Physical Review Letters, 94, 063601(2005).

    [16] Y H Zhai, X H Chen, D Zhang, et al. Two-photon interference with true thermal light. Physical Review A, 72, 043805(2005).

    [17] G Scarcelli, V Berardi, Y Shih. Phase-conjugate mirror via two-photon thermal light imaging. Applied Physics Letters, 88, R3429(2006).

    [18] J H Shapiro, R W Boyd. Response to "The physics of ghost imaging—nonlocal interference or local intensity fluctuation correlation?". Quantum Information Processing, 11, 1003-1011(2012).

    [19] Z P Chen, J H Shi, Y Li, et al. Super-resolution thermal ghost imaging based on deconvolution. The European Physical Journal-Applied Physics, 67, 10501(2014).

    [20] Z P Chen, J H Shi, G H Zeng. Thermal light ghost imaging based on morphology. Optics Communications, 381, 63-71(2016).

    [21] K W Chan, M N O'Sullivan, R W Boyd. High-order thermal ghost imaging. Optics Letters, 34, 3343-3345(2009).

    [22] Y F Bai, S S Han. Ghost imaging with thermal light by third-order correlation. Physical Review A, 76, 043828(2007).

    [23] H Li, J H Shi, Z P Chen, et al. Detailed quality analysis of ideal high-order thermal ghost imaging. Journal of the Optical Society of America A, 29, 2256-2262(2012).

    [24] Hu Li, Z P Chen, J Xiong, et al. Periodic diffraction correlation imaging without a beam-splitter. Optics Express, 20, 2956-2966(2012).

    [25] H Li, Y Z Zhang, J H Shi, et al. Experimental realization of reflection-type periodic diffraction correlation imaging. Applied Physics Letters, 102, 201901(2013).

    [26] H Li, J H Shi, Y C Zhu, et al. Periodic diffraction correlation imaging through strongly scattering mediums. Applied Physics Letters, 103, 051901(2013).

    [27] D F Shi, S X Hu, Y J Wang. Polarimetric ghost imaging. Optics Letters, 39, 1231-1234(2014).

    [28] Yongchao Zhu, Jianhong Shi, Ying Yang, et al. Polarization difference ghost imaging. Applied Optics, 54, 1279-1284(2015).

    [29] Y X Liu, J H Shi, G H Zeng. Single-photon-counting polarization ghost imaging. Applied Optics, 55, 10347-10351(2016).

    [30] Z P Chen, H Li, Y Li, et al. Temporal ghost imaging with a chaotic laser. Optical Engineering, 52, 076103(2013).

    [31] Baraniuk R. Compressive radar imaging[C]IEEE Radar Conference, 2007: 128133.

    [32] Shuang Ma, Zhentao Liu, Chenglong Wang, et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning. Optics Express, 27, 13219-13228(2019).

    [33] G A Howland, P B Dixon, J C Howell. Photon-counting compressive sensing laser radar for 3 D imaging. Applied Optics, 50, 5917-5920(2011).

    [34] G Joel, K Kalyani, B David. Compressive single-pixel snapshot x-ray diffraction imaging. Optics Letters, 39, 111-114(2014).

    [35] H Yu, R Lu, S Han, et al. Fourier-transform ghost imaging with hard X rays. Physical Review Letters, 117, 113901(2016).

    [36] A X Zhang, Y H He, L A Wu, et al. Tabletop X-ray ghost imaging with ultra-low radiation. Optica, 5, 374-377(2018).

    [37] W L Chan, K Charan, D Takhar, et al. A single-pixel terahertz imaging system based on compressed sensing. Applied Physics Letters, 93, 121105(2008).

    [38] D Shrekenhamer, C M Watts, W J Padilla. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Optics Express, 21, 12507-12518(2013).

    [39] S M Hornett, R I Stantchev, M Z Vardaki, et al. Subwavelength terahertz imaging of graphene photoconductivity. Nano Letters, 16, 7019-7024(2016).

    [40] V Studer, J Bobin, M Chahid, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proceedings of the National Academy of Sciences, 109, E1679-E1687(2012).

    [41] S S Welsh, M P Edgar, S S Edgar, et al. Fast full-color computational imaging with single-pixel detectors. Optics Express, 21, 23068-23074(2013).

    [42] S L Jin, W W Hui, Y L Wang, et al. Hyperspectral imaging using the single-pixel Fourier transform technique. Scientific Reports, 7, 45209(2017).

    [43] L Bian, J Suo, G H Situ, et al. Multispectral imaging using a single bucket detector. Scientific Reports, 6, 24752(2016).

    [44] L Pan, C Z Deng, Z Bo, et al. Experimental investigation of chirped amplitude modulation heterodyne ghost imaging. Optics Express, 28, 20808-20816(2020).

    [45] Y H He, Y Y Huang, Z R Zeng, et al. Single-pixel imaging with neutrons. Science Bulletin, 66, 133-138(2021).

    [46] B Q Sun, M P Edgar, R Bowman, et al. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [47] W K Yu, X R Yao, X F Liu, et al. Three-dimensional single-pixel compressive reflectivity imaging based on complementary modulation. Applied Optics, 54, 363-367(2015).

    [48] M J Sun, M P Edgar, G M Gibson, et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nature Communications, 7, 12010(2016).

    [49] Z Zhang, J Zhong. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels. Optics Letters, 41, 2497-2500(2016).

    [50] Z B Zhang, S J Liu, J Z Peng, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements. Optica, 5, 315-319(2018).

    [51] M Wang, M J Sun, C Huang. Single-pixel 3D reconstruction via a high-speed LED array. Journal of Physics: Photonics, 2, 025006(2020).

    [52] Y Y Ma, Y K Yin, S Jiang, et al. Single pixel 3D imaging with phase-shifting fringe projection. Optics and Lasers in Engineering, 140, 106532(2021).

    [53] E J Candès, J K Romberg, T Tao. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59, 1207-1223(2006).

    [54] D L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [55] Wakin M B, Laska J N, Duarte M F, et al. An architecture f compressive imaging[C]International Conference on Image Processing, 2006: 1273–1276.

    [56] E J Candès, T Tao. Near-optimal signal recovery from random projections: Universal encoding strategies?. IEEE Transactions on Information Theory, 52, 5406-5425(2006).

    [57] O Katz, Y Bromberg, Y Silberberg. Compressive ghost imaging. Applied Physics Letters, 95, 739(2009).

    [58] A Krizhevsky, I Sutskever, G E Hinton. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60, 84-90(2017).

    [59] K Simonyan, A Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint, 1409.1556(2014).

    [60] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2015: 19.

    [61] He K M, Zhang X, Ren S, et al. Deep residual learning f image recognition[C]Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, 2016: 770778.

    [62] M Lyu, W Wang, H Wang, et al. Deep-learning-based ghost imaging. Scientific Reports, 7, 17865(2017).

    [63] Pratt W K, Kane J, rews H C. Hadamard transfm image coding[C]Proceedings of the IEEE, 1969, 57: 58–68.

    [64] N J Sloane, M Harwit. Masks for Hadamard transform optics, and weighing designs. Applied Optics, 15, 107-114(1976).

    [65] P Thibault, M Dierolf, A Menzel, et al. High-resolution scanning X-ray diffraction microscopy. Science, 321, 379-382(2008).

    [66] G Scarcelli, V Berardi, Y H Shih. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?. Physical Review Letters, 96, 063602(2006).

    [67] C Q Zhao, W L Gong, M L Chen, et al. Ghost imaging lidar via sparsity constraints. Applied Physics Letters, 101, 141123(2012).

    [68] Y Hayasaki, R Sato. Single-pixel camera with hole-array disk. Optical Review, 27, 252-257(2020).

    [69] A Vallés, J H He, S Ohno, et al. Broadband high-resolution terahertz single-pixel imaging. Optics Express, 28, 28868-28881(2020).

    [70] N Radwell, K J Mitchell, G M Gibson, et al. Single-pixel infrared and visible microscope. Optica, 1, 285-289(2014).

    [71] X L Liu, J H Shi, X Wu, et al. Fast first-photon ghost imaging. Scientific Reports, 8, 1-8(2018).

    [72] Z H Xu, W Chen, J Penuelas, et al. 1000 fps computational ghost imaging using LED-based structured illumination. Optics Express, 26, 2427-2434(2018).

    [73] Komatsu K, Ozeki Y, Nakano Y, et al. Ghost imaging using integrated optical phased array[C]Optical Fiber Communication Conference. IEEE, 2017: 4.

    [74] L J Li, W Chen, X Y Zhao, et al. Fast optical phased array calibration technique for random phase modulation LiDAR. IEEE Photonics Journal, 11, 1-10(2018).

    [75] Y M Wang, G Y Zhou, X S Zhang, et al. 2D broadband beamsteering with large-scale MEMS optical phased array. Optica, 6, 557-562(2019).

    [76] Liu X L, Braverman B, Zeng G H, et al. Using an acoustooptic modulat as a fast spatial light modulat[C]Photonics Nth, IEEE, 2020.

    [77] X L Liu, J H Shi, L Sun, et al. Photon-limited single-pixel imaging. Optics Express, 28, 8132-8144(2020).

    [78] W K Pratt, J Kane, H C Andrews. Hadamard transform image coding. Proceedings of the IEEE, 57, 58-68(1969).

    [79] Y A Geadah, M J Corinthios. Natural, dyadic, and sequency order algorithms and processors for the Walsh-Hadamard transform. IEEE Transactions on Computers, 26, 435-442(1977).

    [80] P G Vaz, D Amaral, L R Ferreira, et al. Image quality of compressive single-pixel imaging using different Hadamard orderings. Optics Express, 28, 11666-11681(2020).

    [81] X Yu, F Yang, B Gao, et al. Deep compressive single pixel imaging by reordering Hadamard basis: a comparative study. IEEE Access, 8, 55773-55784(2020).

    [82] Z B Zhang, X Y Wang, G A Zheng, et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Optics Express, 25, 19619-19639(2017).

    [83] M J Sun, L Meng, M P Edgar, et al. Russian dolls ordering of the Hadamard basis for compressive single-pixel imaging. Scientific Reports, 7, 3464(2017).

    [84] W K Yu. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort. Sensors, 19, 4122(2019).

    [85] W K Yu, Y M Liu. Single-pixel imaging with origami pattern construction. Sensors, 19, 5135(2019).

    [86] Z B Zhang, X Ma, J G Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nature Communications, 6, 1-6(2015).

    [87] Z B Zhang, X Y Wang, G A Zheng, et al. Fast Fourier single-pixel imaging via binary illumination. Scientific Reports, 7, 12029(2017).

    [88] N Radwell, S D Johnson, M P Edgar, et al. Deep learning optimized single-pixel lidar. Applied Physics Letters, 115, 231101(2019).

    [89] Y F Cheng, M Strachan, Z Weiss, et al. Illumination pattern design with deep learning for single-shot Fourier ptychographic microscopy. Optics Express, 27, 644-656(2019).

    [90] Q Q Dai, F Li, O Cossairt, et al. Adaptive illumination based depth sensing using deep learning. arXiv preprint, 2103.12297(2021).

    [91] F Ferri, D Magatti, L A Lugiato, et al. Differential ghost imaging. Physical Review Letters, 104, 253603(2020).

    [92] B Q Sun, S S Welsh, M P Edgar, et al. Normalized ghost imaging. Optics Express, 20, 16892-16901(2012).

    [93] A Kirmani, D Venkatraman, D Shin, et al. First-photon imaging. Science, 343, 58-61(2014).

    [94] Liu X L, Shi J H, Chen H C, et al. Firstphoton ghost imaging at low light level[C]CLEO: Applications Technology. Optical Society of America, 2017: AM4 B. 6.

    [95] X L Liu, Y W Sun, J H Shi, et al. Photon efficiency of computational ghost imaging with single-photon detection. Journal of the Optical Society of America A, 35, 1741-1748(2018).

    [96] E J Candès, M B Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25, 21-30(2008).

    [97] Takha D, Laska J N, Wakin M B, et al. A new compressive imaging camera architecture using opticaldomain compression[C]Proceedings of SPIE, Computational Imaging IV. International Society f Optics Photonics, 2006, 6065: 606509.

    [98] A Buades, B Coll, J M Morel. A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation, 4, 490-530(2005).

    [99] Z P Chen, J H Shi, G H Zeng. Object authentication based on compressive ghost imaging. Applied Optics, 55, 8644-8650(2016).

    [100] T Shimobaba, Y Endo, T Nishitsuji, et al. Computational ghost imaging using deep learning. Optics Communications, 413, 147-151(2018).

    [101] Y C He, G Wang, G X Dong, et al. Ghost imaging based on deep learning. Scientific Reports, 8, 6469(2018).

    [102] F Wang, H Wang, H C Wang, et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Optics Express, 27, 25560-25572(2019).

    [103] R B Shang, K Hoffer-Hawlik, F Wang, et al. Two-step training deep learning framework for computational imaging without physics priors. Optics Express, 29, 15239-15254(2021).

    [104] H Wu, Wang, Z R, G P Zhao, et al. Deep-learning denoising computational ghost imaging. Optics and Lasers in Engineering, 134, 106183(2020).

    [105] I Hoshi, T Shimobaba, T Kakue, et al. Single-pixel imaging using a recurrent neural network combined with convolutional layers. Optics Express, 28, 34069-34078(2020).

    [106] S P Liu, X F Meng, Y K Yin, et al. Computational ghost imaging based on an untrained neural network. Optics and Lasers in Engineering, 147, 106744(2021).

    [107] A Boyde. Stereoscopic images in confocal (tandem scanning) microscopy. Science, 230, 1270-1272(1985).

    [108] N Lazaros, G C Sirakoulis, A Gasteratos. Review of stereo vision algorithms: from software to hardware. International Journal of Optomechatronics, 2, 435-462(2008).

    [109] R J Woodham. Photometric method for determining surface orientation from multiple images. Optical Engineering, 19, 191139(1980).

    [110] G A Howland, D J Lum, M R Ware, et al. Photon counting compressive depth mapping. Optics Express, 21, 23822-23837(2013).

    [111] C L Wang, X D Mei, L Pan, et al. Airborne near infrared three-dimensional ghost imaging lidar via sparsity constraint. Remote Sensing, 10, 732(2018).

    [112] D X Wu, J Luo, G Huang, et al. Imaging biological tissue with high-throughput single-pixel compressive holography. Nature Communications, 12, 4712(2021).

    [113] E Hahamovich, S Monin, Y Hazan, et al. Single pixel imaging at megahertz switching rates via cyclic Hadamard masks. Nature Communications, 12, 4516(2021).

    [114] S Ludwig, G Pedrini, X Peng. Single-pixel scatter-plate microscopy. Optics Letters, 46, 2473-2476(2021).

    [115] H X Deng, G Wang, Q Li, et al. Transmissive single-pixel microscopic imaging through scattering media. Sensors, 21, 2721(2021).

    [116] C G Zhang, B N Han, W Q He, et al. A novel compressive optical encryption via single-pixel imaging. IEEE Photonics Journal, 11, 7801208(2019).

    [117] S Yuan, X M Liu, X Zhou, et al. Multiple-image encryption scheme with a single pixel detector. Journal of Modern Optics, 63, 1457-1465(2016).

    [118] S Yuan, Y R Yang, X M Liu, et al. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging. Optics and Lasers in Engineering, 100, 105-110(2018).

    [119] W T Liu, S Sun, H K Hu, et al. Progress and prospect for ghost imaging of moving objects. Laser & Optoelectronics Progress, 58, 1011001(2021).

    [120] H Li, J Xiong, G H Zeng. Lensless ghost imaging for moving objects. Optical Engineering, 50, 127005(2011).

    [121] S Sun, H K Hu, Y K Xu, et al. Single-pixel tracking and imaging under weak illumination. arXiv preprint, 2012.06091(2012).

    [122] S Ota, R Horisaki, Y Kawamura, et al. Ghost cytometry. Science, 360, 1246-1251(2018).

    [123] Q W Deng, Z B Zhang, Z J Zhong. Image-free real-time 3-D tracking of a fast-moving object using dual-pixel detection. Optics Letters, 45, 4734-4737(2020).

    [124] Dongfeng Shi, K X Yin, J Huang, et al. Fast tracking of moving objects using single-pixel imaging. Optics Communications, 440, 155-162(2019).

    [125] L B Zha, D F Shi, J Huang, et al. Single-pixel tracking of fast-moving object using geometric moment detection. Optics Express, 29, 30327-30336(2021).

    [126] X Zhai, Z D Cheng, Y Wei, et al. Compressive sensing ghost imaging object detection using generative adversarial networks. Optical Engineering, 58, 013108(2019).

    [127] Y H Li, J H Shi, L Sun, et al. Single-pixel salient object detection via discrete cosine spectrum acquisition and deep learning. IEEE Photonics Technology Letters, 32, 1381-1384(2020).

    [128] H C Chen, J H Shi, X L Liu, et al. Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition. Optics Communications, 413, 269-75(2018).

    [129] Y Zhu, J H Shi, X Y Wu, et al. Photon-limited non-imaging object detection and classification based on single-pixel imaging system. Applied Physics B, 126, 1-8(2020).

    CLP Journals

    [1] Xu Yang, Yue Ran, Wei Zhou, Baoteng Xu, Jialin Liu, Xibin Yang. Full-color single-pixel endoscopic imaging system[J]. Infrared and Laser Engineering, 2023, 52(10): 20230077

    Xinliang Zhai, Xiaoyan Wu, Yiwei Sun, Jianhong Shi, Guihua Zeng. Theory and approach of single-pixel imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20211061
    Download Citation