[1] Xia Y, Whitesides GM. Soft lithography. Annu Rev Mater Sci. 1998;28:153–184.
[2] Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22(6):673–685.
[3] del Pozo M, Sol JAHP, Schenning APHJ, Debije MG. 4D printing of liquid crystals: What’s right for me? Adv Mater. 2022;34(3):e2104390.
[4] Mkhize N, Bhaskaran H. Electrohydrodynamic jet printing: Introductory concepts and considerations. Small Sci. 2022;2(2):2100073.
[5] Reizabal A, Tandon B, Lanceros-Méndez S, Dalton PD. Electrohydrodynamic 3D printing of aqueous solutions. Small. 2023;19(7): Article e2205255.
[6] Jandyal A, Chaturvedi I, Wazir I, Raina A, Ul Haq MI. 3D printing—A review of processes, materials and applications in industry 4.0. Sustain Oper Comput. 2022;3:33–42.
[7] Saadi MASR, Maguire A, Pottackal NT, Thakur MSH, Ikram MM, Hart AJ, Ajayan PM, Rahman MM. Direct ink writing: A 3D printing technology for diverse materials. Adv Mater. 2022;34(28): Article e2108855.
[8] Liu Z, Li M, Dong X, Ren Z, Hu W, Sitti M. Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing. Nat Commun. 2022;13(1):2016.
[9] Sedghamiz E, Liu M, Wenzel W. Challenges and limits of mechanical stability in 3D direct laser writing. Nat Commun. 2022;13(1):2115.
[10] del Pozo M, Delaney C, Pilz da Cunha M, Debije MG, Florea L, Schenning APHJ. Temperature-responsive 4D liquid crystal microactuators fabricated by direct laser writing by two-photon polymerization. Small Struct. 2022;3(2):2100158.
[11] Rao DGS, Palacharla V, Swarnakar S, Kumar S. Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking. Appl Optics. 2020;59(23):7139–7143.
[12] Wang X, Xie P, Chen B, Zhang X. Chip-based high-dimensional optical neural network. Nano-Micro Lett. 2022;14(1):221.
[13] Liu Y, Wang P, Wang Y, Lin Z, Liu H, Huang J, Huang Y, Duan X. van der Waals integrated devices based on nanomembranes of 3D materials. Nano Lett. 2020;20(2):1410–1416.
[15] Meng Y, Chen Y, Lu L, Ding Y, Cusano A, Fan JA, Hu Q, Wang K, Xie Z, Liu Z, et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci Appl. 2021;10(1):235.
[16] Huang Y, Xu Y, Bisoyi HK, Liu Z, Wang J, Tao Y, Yang T, Huang S, Yang H, Li Q. Photocontrollable elongation actuation of liquid crystal elastomer films with well-defined crease structures. Adv Mater. 2023;35(36): Article e2304378.
[17] Ma L-L, Li CY, Pan JT, Ji YE, Jiang C, Zheng R, Wang ZY, Wang Y, Li BX, Lu YQ. Self-assembled liquid crystal architectures for soft matter photonics. Light Sci Appl. 2022;11(1):270.
[18] Chen J, Xiong Y, Xu F, Lu Y. Silica optical fiber integrated with two-dimensional materials: Towards opto-electro-mechanical technology. Light Sci Appl. 2021;10(1):78.
[20] Zhu S, Chen X, Liu X, Zhang G, Tian P. Recent progress in and perspectives of underwater wireless optical communication. Prog Quantum Electron. 2020;73: Article 100274.
[21] He J, Dong T, Xu Y. Review of photonic integrated optical phased arrays for space optical communication. IEEE Access. 2020;8:188284–188298.
[22] Zhu Z, Janasik M, Fyffe A, Hay D, Zhou Y, Kantor B, Winder T, Boyd RW, Leuchs G, Shi Z. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat Commun. 2021;12(1):1666.
[23] Yu B-Y, Yue DW, Hou KX, Ju L, Chen H, Ding C, Liu ZG, Dai YQ, Bisoyi HK, Guan YS, et al. Stretchable and self-healable spoof plasmonic meta-waveguide for wearable wireless communication system. Light Sci Appl. 2022;11(1):307.
[24] Zola RS, Bisoyi HK, Wang H, Urbas AM, Bunning TJ, Li Q. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings. Adv Mater. 2019;31: Article e1806172.
[25] Xiong J, Wu S-T. Planar liquid crystal polarization optics for augmented reality and virtual reality: From fundamentals to applications. eLight. 2021;1:3.
[26] Jisha CP, Arumugam SV, Marrucci L, Nolte S, Alberucci A. Waveguiding driven by the Pancharatnam-Berry phase. Phys Rev A. 2023;107: Article 013523.
[27] Wei T, Chen P, Tang MJ, Wu GX, Chen ZX, Shen ZX, Ge SJ, Xu F, Hu W, Lu YQ. Liquid-crystal-mediated active waveguides toward programmable integrated optics. Adv Opt Mater. 2020;8(10):1902033.
[28] Chen S, Zhuo M-P, Wang X-D, Wei G-Q, Liao L-S. Optical waveguides based on one-dimensional organic crystals. PhotoniX. 2021;2:2.
[29] Annadhasan M, Basak S, Chandrasekhar N, Chandrasekar R. Next-generation organic photonics: The emergence of flexible crystal optical waveguides. Adv Opt Mater. 2020;8(21):2000959.
[32] Hsiang E-L, Wu S-T. Novel developments in computational spectropolarimeter. Light Sci Appl. 2023;12(1):52.
[33] Jain P, Honnungar RV. A review on materials for integrated optical waveguides. Paper presented at: Proceedings of Fourth International Conference on Inventive Material Science Applications. Advances in Sustainability Science and Technology; 2021 Oct. 20; Springer Singapore.
[34] Chakravarty S, Teng M, Safian R, Zhuang L. Hybrid material integration in silicon photonic integrated circuits. J Semicond. 2021;42: Article 041303.
[35] Ding Y, Li Y, Yang Q, Wu S. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays. J Soc Inf Disp. 2023;31(5):380–386.
[36] Chen X, Li C, Tsang HK. Device engineering for silicon photonics. NPG Asia Mater. 2011;3:34–40.
[37] Bogaerts W, Chrostowski L. Silicon photonics circuit design: Methods, tools and challenges. Laser Photon Rev. 2018;12(4):1700237.
[38] Zheng R, Ma L, Feng W, Pan J, Wang Z, Chen Z, Zhang Y, Li C, Chen P, Bisoyi HK, et al. Autonomous self-sustained liquid crystal actuators enabling active photonic applications. Adv Funct Mater. 2023;33(38):2301142.
[40] Yin K, Hsiang EL, Zou J, Li Y, Yang Z, Yang Q, Lai PC, Lin CL, Wu ST. Advanced liquid crystal devices for augmented reality and virtual reality displays: Principles and applications. Light Sci Appl. 2022;11(1):161.
[41] Xiong J, Yang Q, Li Y, Wu S-T. Holo-imprinting polarization optics with a reflective liquid crystal hologram template. Light Sci Appl. 2022;11(1):54.
[42] Zhang X, Xu Y, Valenzuela C, Zhang X, Wang L, Feng W, Li Q. Liquid crystal-templated chiral nanomaterials: From chiral plasmonics to circularly polarized luminescence. Light Sci Appl. 2022;11(1):223.
[43] Coles H, Morris S. Liquid-crystal lasers. Nat Photonics. 2010;4:676–685.
[44] Chen X-M, Feng WJ, Bisoyi HK, Zhang S, Chen X, Yang H, Li Q. Light-activated photodeformable supramolecular dissipative self-assemblies. Nat Commun. 2022;13:3216.
[45] Wei B, Zhang Y, Li P, Liu S, Hu W, Lu Y, Wu Y, Dou X, Zhao J. Liquid-crystal splitter for generating and separating autofocusing and autodefocusing circular Airy beams. Opt Express. 2020;28(18):26151–26160.
[46] Li S, Bai H, Liu Z, Zhang X, Huang C, Wiesner LW, Silberstein M, Shepherd RF. Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Sci Adv. 2021;7(30): Article eabg3677.
[47] Wu J, Wu SB, Cao HM, Chen QM, Lu YQ, Hu W. Electrically tunable microlens array enabled by polymer-stabilized smectic hierarchical architectures. Adv Opt Mater. 2022;10(20):2201015.
[48] Bolis S, Gorza SP, Elston SJ, Neyts K, Kockaert P, Beeckman J. Spatial fluctuations of optical solitons due to long-range correlated dielectric perturbations in liquid crystals. Phys Rev A. 2017;96: Article 031803.
[50] Chen P, Wei B, Hu W, Lu Y. Liquid-crystal-mediated geometric phase: From transmissive to broadband reflective planar optics. Adv Mater. 2020;32(27): Article e1903665.
[51] Zografopoulos DC, Asquini R, Kriezis EE, D’Alessandro A, Beccherelli R. Guided-wave liquid-crystal photonics. Lab Chip. 2012;12(19):3598.
[52] Lammers K, Alberucci A, Pannian J, Szameit A, Nolte S. Hybridization of femtosecond-laser written waveguides with liquid crystals. Optica Open. Preprint. 2023.
[53] Rüetschi M, Grütter P, Fünfschilling J, Güntherodt H-J. Creation of liquid crystal waveguides with scanning force microscopy. Science. 1994;265(5171):512–514.
[54] Whinnery J, Chenming H, Kwon Y. Liquid-crystal waveguides for integrated optics. IEEE J Quantum Electron. 1977;13(4):262–267.
[55] Hu C, Whinnery JR. Losses of a nematic liquid-crystal optical waveguide*. J Opt Soc Am. 1974;64(11):1424–1432.
[56] Asquini R, Fratalocchi A, D’Alessandro A, Assanto G. Electro-optic routing in a nematic liquid-crystal waveguide. Appl Optics. 2005;44(19):4136–4143.
[58] Fratalocchi A, Assanto G, Brzdąkiewicz KA, Karpierz MA. Optical multiband vector breathers in tunable waveguide arrays. Opt Lett. 2005;30(2):174–176.
[59] Kasano M, Ozaki M, Yoshino K, Ganzke D, Haase W. Electrically tunable waveguide laser based on ferroelectric liquid crystal. Appl Phys Lett. 2003;82:4026–4028.
[60] Presnyakov VV, Liu ZJ, Chigrinov VG. Infiltration of photonic crystal fiber with liquid crystals. Paper presented at: Proc. SPIE 6017, Nanophotonics for Communication: Materials and Devices II, 60170J; 2005; Boston, MA, USA.
[61] Beeckman J, James R, Fernandez FA, de Cort W, Vanbrabant PJM, Neyts K. Calculation of fully anisotropic liquid crystal waveguide modes. J Light Technol. 2009;27(17):3812–3819.
[62] Beeckman J. Liquid-crystal photonic applications. Opt Eng. 2011;50(8): Article 081202.
[63] Bogaerts W, Adamski A, Beeckman J, Neyts K, Baets R. Silicon-on-insulator optical waveguides with liquid crystal cladding for switching and tuning. Paper presented at: Proceedings of the European Conference on Optical Communications; 2003.
[64] De Cort W, Beeckman J, James R, Fernández FA, Baets R, Neyts K. Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component. Opt Lett. 2009;34(13):2054.
[65] d’Alessandro A, Bellini B, Donisi D, Beccherelli R, Asquini R. Nematic liquid crystal optical channel waveguides on silicon. IEEE J Quantum Electron. 2006;42(10):1084–1090.
[66] Donisi D, Bellini B, Beccherelli R, Asquini R, Gilardi G, Trotta M, d’Alessandro A. A switchable liquid-crystal optical channel waveguide on silicon. IEEE J. Quantum Electron. 2010;46(5):762–768.
[67] Cai D-P, Nien S-C, Chiu H-K, Chen C-C, Lee C-C. Electrically tunable liquid crystal waveguide attenuators. Opt Express. 2011;19(12):11890.
[68] d’Alessandro A, Martini L, Civita L, Beccherelli R, Asquini R. Liquid crystal waveguide technologies for a new generation of low-power photonic integrated circuits. SPIE Proc. 2015;9384:74–81.
[69] Zhao H, O’Brien K, Li S, Shepherd RF. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci Robot. 2016;1(1): Article eaai7529.
[70] Wang A, Das A, Grojo D. Ultrafast laser writing deep inside silicon with THz-repetition-rate trains of pulses. Research. 2020;2020: Article 8149764.
[71] Kollipara PS, Li J, Zheng Y. Optical patterning of two-dimensional materials. Research. 2020;2020: Article 6581250.
[72] Lin Z, Hong M. Femtosecond laser precision engineering: From micron, submicron, to nanoscale. Ultrafast Sci. 2021;2021: Article 9783514.
[73] Chen B, Zhao Z, Morris SM. Chiral switches bring new twist to photonics. Nat Photonics. 2022;16:174–175.
[75] Salari V, Rodrigues S, Saglamyurek E, Simon C, Oblak D. Are brain–computer interfaces feasible with integrated photonic chips? Front Neurosci. 2022;15:780344.
[76] Cabrera LY, Weber DJ. Rethinking the ethical priorities for brain–computer interfaces. Nat Electron. 2023;6:99–101.
[78] Kuenstler AS, Kim H, Hayward RC. Liquid crystal elastomer waveguide actuators. Adv Mater. 2019;31(24): Article e1901216.
[79] Batula AM, Mark J, Kim YE, Ayaz H. Developing an optical brain-computer interface for humanoid robot control. In: Schmorrow D, Fidopiastis C, editors. Foundations of augmented cognition: Neuroergonomics and operational neuroscience. AC 2016. Lecture Notes in Computer Science. Cham: Springer; 2016.
[80] Chen B, Zhao Z, Nourshargh C, He C, Salter PS, Booth MJ, Elston SJ, Morris SM. Laser written stretchable diffractive optic elements in liquid crystal gels. Crystals. 2022;12(10):1340.
[81] Sandford O’Neill J. 3D switchable diffractive optical elements fabricated with two-photon polymerization. Adv Opt Mater. 2022;10(7):2102446.
[82] Szobota S, Isacoff EY. Optical control of neuronal activity. Annu Rev Biophys. 2010;39:329–348.
[85] Ayaz H, Shewokis PA, Bunce S, Onaral B. An optical brain computer interface for environmental control. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6327–6330.