• Opto-Electronic Engineering
  • Vol. 46, Issue 8, 180519 (2019)
Zhang Hongtao*, Cheng Yongzhi, and Huang Mulin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180519 Cite this Article
    Zhang Hongtao, Cheng Yongzhi, Huang Mulin. Broadband terahertz tunable metasurface linear polarization converter based on graphene[J]. Opto-Electronic Engineering, 2019, 46(8): 180519 Copy Citation Text show less
    References

    [1] Liu F, Zhu Z B, Cui W Z. Prospects on space THz information techniques[J]. Journal of Microwaves, 2013, 29(2): 1–6.

    [2] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1): 26–33.

    [3] Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases[J]. Physical Review Letters, 2009, 102(9): 093001.

    [4] Saeedkia D. Handbook of Terahertz Technology for Imaging, Sensing and Communications[M]. England: Woodhead Publishing, 2013: 641–662.

    [5] Jia Y X, Fan Q, Wang Y F. Multi-focus lens based on metasurface holography[J]. Opto-Electronic Engineering, 2017, 44(7): 670–675.

    [6] Chen C Y, Tsai T R, Pan C L, et al. Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals[J]. Applied Physics Letters, 2003, 83(22): 4497–4499.

    [7] Rutz F, Hasek T, Koch M, et al. Terahertz birefringence of liquid crystal polymers[J]. Applied Physics Letters, 2006, 89(22): 221911.

    [8] Yamada I, Takano K, Hangyo M, et al. Terahertz wire-grid polarizers with micrometer-pitch Al gratings[J]. Optics Letters, 2009, 34(3): 274–276.

    [9] Liu Y M, Zhang X. Metamaterials: a new frontier of science and technology[J]. Chemical Society Reviews, 2011, 40(5): 2494–2507.

    [10] Pu M B, Chen P, Wang Y Q, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906.

    [11] Guo Y H, Yan L S, Pan W, et al. Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566–27575.

    [12] Guo Y H, Wang Y Q, Pu M B, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434.

    [13] Zhu J F, Li S F, Deng L, et al. Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial[J]. Optical Materials Express, 2018, 8(5): 1164–1173.

    [14] Tang Y Z, Ma W Y, Wei Y H, et al. A tunable terahertz metamaterial and its sensing performance[J]. Opto-Electronic Engineering, 2017, 44(4): 453–457.

    [15] Yang C, Luo Y, Guo J X, et al. Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene[J]. Optics Express, 2016, 24(15): 16913–16922.

    [16] Chen M, Chang L Z, Gao X, et al. Wideband tunable cross polarization converter based on a graphene metasurface with a hollow-carved “H” array[J]. IEEE Photonics Journal, 2017, 9(5): 4601011.

    [17] Dai Y M, Ren W Z, Cai H B, et al. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure[J]. Optics Express, 2014, 22(7): 7465–7472.

    [18] Glybovski S B, Tretyakov S A, Belov P A, et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 2016, 634: 1–72.

    [19] Cong L Q, Cao W, Zhang X Q, et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters, 2013, 103(17): 171107.

    [20] Cheng Y Z, Withayachumnankul W, Upadhyay A, et al. Ultrabroadband reflective polarization convertor for terahertz waves[J]. Applied Physics Letters, 2014, 105(18): 181111.

    [21] Liu W W, Chen S Q, Li Z C, et al. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface[J]. Optics Letters, 2015, 40(13): 3185–3188.

    [22] Li C Y, Chang C C, Zhou Q L, et al. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs[J]. Optics Express, 2017, 25(21): 25842–25852.

    [23] Fu Y N, Zhang X Q, Zhao G Z, et al. A broadband polarization converter based on resonant ring in terahertz region[J]. Acta Physica Sinica, 2017, 66(18): 62–71.

    [24] Zhao J C, Cheng Y Z, Cheng Z Z. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves[J]. IEEE Photonics Journal, 2018, 10(1): 4600210.

    [25] Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530–1534.

    [26] Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

    [27] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183–191.

    [28] Gan C H, Chu H S, Li E P. Synthesis of highly confined surface Plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies[J]. Physical Review B, 2012, 85(12): 125431.

    [29] Zhao J C, Cheng Y Z. A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial[J]. Applied Physics B, 2016, 122(10): 255.

    [30] Fang C, Cheng Y Z, He Q Z, et al. Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface[J]. Optik, 2017, 137: 148–155.

    [31] Xia R, Jing X F, Gui X C, et al. Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials[J]. Optical Materials Express, 2017, 7(3): 977–988.

    [32] Falkovsky L A. Optical properties of graphene[J]. Journal of Physics: Conference Series, 2008, 129(1): 012004.

    [33] Huang M L, Cheng Y Z, Cheng Z Z, et al. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle[J]. Optics Communications, 2018, 415: 194–201.

    [34] Zhu B F, Ren G B, Zheng S W, et al. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices[J]. Optics Express, 2013, 21(14): 17089–17096.

    [35] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291–1294.

    [36] Hao J M, Yuan Y, Ran L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908.

    [37] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307.

    [38] Gao X, Han X, Cao W P, et al. Ultrawideband and high-efficiency linear polarization converter based on double V-Shaped metasurface[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3522–3530.

    [39] Cheng Y Z, Fang C, Mao X S, et al. Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency[J]. IEEE Photonics Journal, 2016, 8(6): 7805509.

    [40] Tang J Y, Xiao Z Y, Xu K K, et al. Cross polarization conversion based on a new chiral spiral slot structure in THz region[J]. Optical and Quantum Electronics, 2016, 48(2): 111.

    [41] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275.

    Zhang Hongtao, Cheng Yongzhi, Huang Mulin. Broadband terahertz tunable metasurface linear polarization converter based on graphene[J]. Opto-Electronic Engineering, 2019, 46(8): 180519
    Download Citation