• Photonics Research
  • Vol. 3, Issue 4, 100 (2015)
Xinghao Zhang1、2 and Jingsong Wei1、*
Author Affiliations
  • 1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.3.000100 Cite this Article Set citation alerts
    Xinghao Zhang, Jingsong Wei. Direct detection of the transient superresolution effect of nonlinear saturation absorption thin films[J]. Photonics Research, 2015, 3(4): 100 Copy Citation Text show less
    References

    [1] J. Wei. Nonlinear Super-resolution Nano-Optics and Applications(2015).

    [2] R. Wang, J. Wei. Parabolic approximation analytical model of super-resolution spot generation using nonlinear thin films: theory and simulation. Opt. Commun., 316, 220-227(2014).

    [3] C. Barsi, J. W. Fleischer. Nonlinear Abbe theory. Nat. Photonics, 7, 639-643(2013).

    [4] L. E. Helseth. Breaking the diffraction limit in nonlinear materials. Opt. Commun., 256, 435-438(2005).

    [5] S. Tofighi, A. R. Bahrampour. Theoretical model for visible light saturable absorber nanolithography. J. Opt., 14, 125004(2012).

    [6] J. Wei, H. Yan. Strong nonlinear saturation absorption-induced optical pinhole channel and super-resolution effects: a multi-layer system model. Opt. Lett., 39, 6387-6390(2014).

    [7] J. Tominaga, T. Nakano, N. Atoda. An approach for recording and readout beyond the diffraction limit with an Sb thin film. Appl. Phys. Lett., 73, 2078-2080(1998).

    [8] R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, J. Tominaga. Non-melting super-resolution near-field apertures in Sb-Te alloys. Appl. Phys. Lett., 97, 161906(2010).

    [9] T. Fukaya, J. Tominaga, T. Nakano, N. Atoda. Optical switching property of a light-induced pinhole in antimony thin film. Appl. Phys. Lett., 75, 3114-3116(1999).

    [10] F. Zhai, F. Zuo, H. Huang, Y. Wang, T. Lai, Y. Wu, F. Gan. Optical switch formation in antimony super-resolution mask layers induced by picosecond laser pulses. Chin. Phys. Lett., 27, 014209(2010).

    [11] D. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, C. J. Yeh. Dynamic aperture of near-field super resolution structures. Jpn. J. Appl. Phys., 39, 982-983(2000).

    [12] L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. Simpson, R. Ernstorfer, S. Wall. Decoupled optical response and structural transition in phase change materials.

    [13] M. Xiao. Theoretical treatment for scattering scanning near-field optical microscopy. J. Opt. Soc. Am. A, 14, 2977-2984(1997).

    [14] J. Wei, J. Liu. Direct observation of below-diffraction-limited optical spot induced by nonlinear saturable absorption of Ag-doped Si nanofilms. Opt. Lett., 35, 3126-3128(2010).

    [15] A. Goy, D. Psaltis. Imaging in focusing Kerr media using reverse propagation. Photon. Res., 1, 96-101(2013).

    [16] A. C. Assafrao, A. J. H. Wachters, M. Verheijen, A. M. Nugrowati, S. F. Pereira, H. P. Urbach, M. Armand, S. Olivier. Direct measurement of the near-field super resolved focused spot in InSb. Opt. Express, 20, 10426-10437(2012).

    [17] B. Song, J. Lee, J. H. Kim, K. Cho, S. K. Kim. Direct observation of self-focusing with subdiffraction limited resolution using near-field scanning optical microscope. Phys. Rev. Lett., 85, 3842-3845(2000).

    [18] D. P. Tsai, W. C. Lin. Probing the near fields of the super-resolution near-field optical structure. Appl. Phys. Lett., 77, 1413-1415(2000).

    [19] K. Watabe, P. Polynkin, M. Mansuripur. Optical pump and probe test system for thermal characterization of thin metal and phase-change films. Appl. Opt., 44, 3167-3173(2005).

    [20] M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe. Static tester for characterization of phase change, dye polymer, and magneto-optical media for optical data storage. Appl. Opt., 38, 7095-7104(1999).

    [21] C. B. Peng, M. Mansuripur. Amorphization induced by subnanosecond laser pulses in phase-change optical recording media. Appl. Opt., 43, 4367-4375(2004).

    [22] S. Liu, J. Wei, F. Gan. Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films. J. Appl. Phys., 110, 033503(2011).

    [23] Y. H. Fu, Y. L. Lu, P. H. Chang, W. Hsu, S. Tsai, D. P. Tsai. Z-scan study of nonlinear optical coupling of PtOx and Ge2Sb2Te5 of near-field optical recording structure. Jpn. J. Appl. Phys., 45, 7224-7227(2006).

    [24] H. S. Lee, B. Cheong, T. S. Lee, J. Jeong, S. Lee, W. M. Kim, D. Kim. Origin of nonlinear optical characteristics of crystalline Ge-Sb-Te thin films for possible superresolution effects. Jpn. J. Appl. Phys., 46, L277-L279(2007).

    [25] H. S. Lee, T. S. Lee, Y. Lee, J. Kim, S. Lee, J. Huh, D. Kim, B. Cheong. Microstructural and optical analysis of superresolution phenomena due to Ge2Sb2Te5 thin films at blue light regime. Appl. Phys. Lett., 93, 221108(2008).

    [26] H. Yan, J. Wei. False nonlinear effect in z-scan measurement based on semiconductor laser devices: theory and experiments. Photon. Res., 2, 51-58(2014).

    CLP Journals

    [1] Kui Zhang, Zhimin Chen, Yongyou Geng, Yang Wang, Yiqun Wu. Nanoscale-resolved patterning on metal hydrazone complex thin films using diode-based maskless laser writing in the visible light regime[J]. Chinese Optics Letters, 2016, 14(5): 051401

    [2] Tao Wei, Jingsong Wei, Kui Zhang, Long Zhang. Image lithography in telluride suboxide thin film through controlling “virtual” bandgap[J]. Photonics Research, 2017, 5(1): 22

    Xinghao Zhang, Jingsong Wei. Direct detection of the transient superresolution effect of nonlinear saturation absorption thin films[J]. Photonics Research, 2015, 3(4): 100
    Download Citation