• Photonics Research
  • Vol. 11, Issue 2, 357 (2023)
Minjian Lu, Yujia Zhang, Xinyi Chen, Yan Li, and Haoyun Wei*
Author Affiliations
  • Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.1364/PRJ.473841 Cite this Article Set citation alerts
    Minjian Lu, Yujia Zhang, Xinyi Chen, Yan Li, Haoyun Wei. Interpulse stimulation Fourier-transform coherent anti-Stokes Raman spectroscopy[J]. Photonics Research, 2023, 11(2): 357 Copy Citation Text show less
    References

    [1] Y. Zhang, M. Lu, T. Wu, K. Chen, Y. Feng, W. Wang, Y. Li, H. Wei. Delay-spectral focusing dual-comb coherent Raman spectroscopy for rapid detection in the high-wavenumber region. ACS Photon., 9, 1385-1394(2022).

    [2] K. Aljakouch, Z. Hilal, I. Daho, M. Schuler, S. D. Krauß, H. K. Yosef, J. Dierks, A. Mosig, K. Gerwert, S. F. El-Mashtoly. Fast and noninvasive diagnosis of cervical cancer by coherent anti-Stokes Raman scattering. Anal. Chem., 91, 13900-13906(2019).

    [3] C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, M. T. Cicerone. Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy. Anal. Chem., 85, 8102-8111(2013).

    [4] A. Virga, C. Ferrante, G. Batignani, D. De Fazio, A. D. G. Nunn, A. C. Ferrari, G. Cerullo, T. Scopigno. Coherent anti-Stokes Raman spectroscopy of single and multi-layer graphene. Nat. Commun., 10, 3658(2019).

    [5] T. Wu, K. Chen, H. Wei, Y. Li. Repetition frequency modulated fiber laser for coherent anti-Stokes Raman scattering. Opt. Lett., 45, 407-410(2020).

    [6] J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, M. Joffre. Fourier-transform coherent anti-Stokes Raman scattering microscopy. Opt. Lett., 31, 480-482(2006).

    [7] M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, K. Goda. Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000  spectra/s enabled by a scanning Fourier-domain delay line. Vib. Spectrosc., 91, 163-169(2017).

    [8] R. Kameyama, S. Takizawa, K. Hiramatsu, K. Goda. Dual-comb coherent Raman spectroscopy with near 100% duty cycle. ACS Photon., 8, 975-981(2021).

    [9] K. Hashimoto, M. Takahashi, T. Ideguchi, K. Goda. Broadband coherent Raman spectroscopy running at 24,000 spectra per second. Sci. Rep., 6, 21036(2016).

    [10] B. Sarri, X. Chen, R. Canonge, S. Grégoire, F. Formanek, J. B. Galey, A. Potter, T. Bornschlögl, H. Rigneault. In vivo quantitative molecular absorption of glycerol in human skin using coherent anti-Stokes Raman scattering (CARS) and two-photon auto-fluorescence. J. Control. Release, 308, 190-196(2019).

    [11] T. Kamali, B. Považay, S. Kumar, Y. Silberberg, B. Hermann, R. Werkmeister, W. Drexler, A. Unterhuber. Hybrid single-source online Fourier transform coherent anti-Stokes Raman scattering/optical coherence tomography. Opt. Lett., 39, 5709-5712(2014).

    [12] M. Lindley, J. Gala de Pablo, W. Peterson, A. Isozaki, K. Hiramatsu, K. Goda. High-throughput Raman-activated cell sorting in the fingerprint region. Adv. Mater. Technol., 7, 2101567(2022).

    [13] Y.-X. Yan, E. B. Gamble, K. A. Nelson. Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J. Chem. Phys., 83, 5391-5399(1985).

    [14] D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, G. Cerullo. Broadband coherent Raman scattering microscopy. Laser Photon. Rev., 12, 1800020(2018).

    [15] T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, T. W. Hänsch. Coherent Raman spectro-imaging with laser frequency combs. Nature, 502, 355-358(2013).

    [16] C. H. Camp, M. R. Hamblin, P. Avci, D. Gupta. Broadband Coherent Anti-Stokes Raman Scattering, 155-168(2016).

    [17] C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, M. T. Cicerone. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photonics, 8, 627-634(2014).

    [18] L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, J. C. Knight. Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express, 19, 4902-4907(2011).

    [19] N. Coluccelli, E. Vicentini, A. Gambetta, C. R. Howle, K. Mcewan, P. Laporta, G. Galzerano. Broadband Fourier-transform coherent Raman spectroscopy with an ytterbium fiber laser. Opt. Express, 26, 18855-18862(2018).

    [20] K. Hashimoto, J. Omachi, T. Ideguchi. Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses. Opt. Express, 26, 14307-14314(2018).

    [21] M. Li, J. Wu, M. Ma, Z. Feng, Z. Mi, P. Rong, D. Liu. Alkyne-and nitrile-anchored gold nanoparticles for multiplex SERS imaging of biomarkers in cancer cells and tissues. Nanotheranostics, 3, 113-119(2019).

    [22] L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C. C. Lin, M. C. Wang, W. Min. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods, 11, 410-412(2014).

    [23] I. P. Santos, P. J. Caspers, T. C. Bakker Schut, R. Van Doorn, V. Noordhoek Hegt, S. Koljenović, G. J. Puppels. Raman spectroscopic characterization of melanoma and benign melanocytic lesions suspected of melanoma using high-wavenumber Raman spectroscopy. Anal. Chem., 88, 7683-7688(2016).

    [24] D. Oron, N. Dudovich, D. Yelin, Y. Silberberg. Narrow-band coherent anti-Stokes Raman signals from broad-band pulses. Phys. Rev. Lett., 88, 063004(2002).

    [25] K. Chen, T. Wu, T. Chen, H. Wei, H. Yang, T. Zhou, Y. Li. Spectral focusing dual-comb coherent anti-Stokes Raman spectroscopic imaging. Opt. Lett., 42, 3634-3637(2017).

    Minjian Lu, Yujia Zhang, Xinyi Chen, Yan Li, Haoyun Wei. Interpulse stimulation Fourier-transform coherent anti-Stokes Raman spectroscopy[J]. Photonics Research, 2023, 11(2): 357
    Download Citation