• Advanced Photonics Nexus
  • Vol. 3, Issue 3, 036005 (2024)
Changqing Su1、†, Zihan Lin2, You Zhou3, Shuai Wang4、5, Yuhan Gao4、5, Chenggang Yan4, and Bo Xiong1、*
Author Affiliations
  • 1Peking University, National Engineering Research Center of Visual Technology, Beijing, China
  • 2Hangzhou Dianzi University, School of Automation, Hangzhou, China
  • 3Medical School of Nanjing University, Nanjing, China
  • 4Hangzhou Dianzi University, School of Communication Engineering, Hangzhou, China
  • 5Lishui Institute of Hangzhou Dianzi University, Lishui, China
  • show less
    DOI: 10.1117/1.APN.3.3.036005 Cite this Article Set citation alerts
    Changqing Su, Zihan Lin, You Zhou, Shuai Wang, Yuhan Gao, Chenggang Yan, Bo Xiong. PC-bzip2: a phase-space continuity-enhanced lossless compression algorithm for light-field microscopy data[J]. Advanced Photonics Nexus, 2024, 3(3): 036005 Copy Citation Text show less
    References

    [1] R. Prevedel et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods, 11, 727-730(2014).

    [2] O. Skocek et al. High-speed volumetric imaging of neuronal activity in freely moving rodents. Nat. Methods, 15, 429-432(2018).

    [3] Z. Zhang et al. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. Nat. Biotechnol., 39, 74-83(2021).

    [4] J. Wu et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell., 184, 3318-3332.e17(2021).

    [5] B. Xiong et al. Mirror-enhanced scanning light-field microscopy for long-term high-speed 3D imaging with isotropic resolution. Light: Sci. Appl., 10, 227(2021).

    [6] N. Wagner et al. Instantaneous isotropic volumetric imaging of fast biological processes. Nat. Methods., 16, 497-500(2019).

    [7] F. Amat et al. Efficient processing and analysis of large-scale light-sheet microscopy data. Nat. Protoc., 10, 1679-1696(2015).

    [8] A. Li et al. Challenges of processing and analyzing big data in mesoscopic whole-brain imaging. Genom. Proteom. Bioinf., 17, 337-343(2019).

    [9] A. Andreev, D. E. Koo. Practical guide to storage of large amounts of microscopy data. Microsc. Today., 28, 42-45(2020).

    [10] Y. Bai et al. Deep lossy plus residual coding for lossless and near-lossless image compression. IEEE Trans. Pattern. Anal. Mach. Intell., 1-18(2024).

    [11] K. K. Shukla, M. Prasad. Lossy Image Compression: Domain Decomposition-Based Algorithms(2011).

    [12] M. Rabbani, P. W. Jones. Digital Image Compression Techniques(1991).

    [13] S. Zheng et al. Super-compression of large electron microscopy time series by deep compressive sensing learning. Patterns., 2, 100292(2021).

    [14] H. Ma et al. End-to-end optimized versatile image compression with wavelet-like transform. IEEE Trans. Pattern. Anal. Mach. Intell., 44, 1247-1263(2020).

    [15] M. Lu et al. Transformer-based image compression, 469-469(2022).

    [16] Y. Qian et al. Entroformer: a transformer-based entropy model for learned image compression(2021).

    [17] D. W. Cromey. Digital images are data: and should be treated as such. Cell Imaging Technol. Methods. Protoc., 931, 1-27(2013).

    [18] Y. Hu et al. Learning end-to-end lossy image compression: a benchmark. IEEE. Trans. Pattern. Anal. Mach. Intell., 44, 4194-4211(2021).

    [19] V. K. Bairagi. Symmetry-based biomedical image compression. J. Digital Imaging, 28, 718-726(2015).

    [20] H. Kaur, R. Kaur, N. Kumar. Review of various techniques for medical image compression. Int. J. Comput. Appl., 123, 25-29(2015).

    [21] S. Radhakrishnan, L. M. Matos, A. J. Neves, A. J. Pinho. Lossy-to-lossless compression of biomedical images based on image decomposition. Applications of Digital Signal Processing through Practical Approach(2015).

    [22] O. H. Nagoor et al. Medzip: 3D medical images lossless compressor using recurrent neural network (LSTM), 2874-2881(2021).

    [23] J. Sneyers, P. Wuille. FLIF: free lossless image format based on MANIAC compression, 66-70(2016).

    [24] B. Balázs et al. A real-time compression library for microscopy images(2017).

    [25] L. Waller, G. Situ, J. W. Fleischer. Phase-space measurement and coherence synthesis of optical beams. Nat. Photonics., 6, 474-479(2012).

    [26] J. Townsend, T. Bird, D. Barber. Practical lossless compression with latent variables using bits back coding, 7(2020).

    [27] J. Townsend et al. Hilloc: lossless image compression with hierarchical latent variable models, 7(2019).

    [28] N. Kang et al. PILC: practical image lossless compression with an end-to-end GPU oriented neural framework, 3739-3748(2022).

    [29] F. Kingma, P. Abbeel, J. Ho. Bit-swap: recursive bits-back coding for lossless compression with hierarchical latent variables, 3408-3417(2019).

    [30] J. Ho, E. Lohn, P. Abbeel. Compression with flows via local bits-back coding(2019).

    [31] I. Goodfellow et al. Generative adversarial nets(2014).

    [32] F. Mentzer et al. High-fidelity generative image compression, 11913-11924(2020).

    [33] L. Wu, K. Huang, H. Shen. A GAN-based tunable image compression system, 2334-2342(2020).

    [34] S. Kudo et al. GAN-based image compression using mutual information maximizing regularization, 1-5(2019).

    [35] E. Hoogeboom et al. Integer discrete flows and lossless compression(2019).

    [36] M. Magnor, B. Girod. Data compression for light-field rendering. IEEE Trans. Circuits Syst. Video Technol., 10, 338-343(2000).

    [37] G. Wu et al. Light field image processing: an overview. IEEE J. Sel. Top. Signal Process, 11, 926-954(2017).

    [38] X. Huang et al. Light-field compression using a pair of steps and depth estimation. Opt. Express, 27, 3557-3573(2019).

    [39] F. Mentzer et al. Practical full resolution learned lossless image compression, 10621-10630(2019).

    [40] F. Mentzer, L. Van Gool, M. Tschannen. Learning better lossless compression using lossy compression, 6637-6646(2020).

    [41] R. van den Berg et al. IDF++: analyzing and improving integer discrete flows for lossless compression(2020).

    [42] S. Zhang et al. iVPF: Numerical invertible volume preserving flow for efficient lossless compression, 1-10(2021).

    [43] S. Zhang et al. iFlow: numerically invertible flows for efficient lossless compression via a uniform coder, 5822-5833(2021).

    Changqing Su, Zihan Lin, You Zhou, Shuai Wang, Yuhan Gao, Chenggang Yan, Bo Xiong. PC-bzip2: a phase-space continuity-enhanced lossless compression algorithm for light-field microscopy data[J]. Advanced Photonics Nexus, 2024, 3(3): 036005
    Download Citation