• Opto-Electronic Engineering
  • Vol. 45, Issue 6, 170738 (2018)
Sun Yannan1、2、*, Li Bingzhao1、2, and Tao Ran3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2018.170738 Cite this Article
    Sun Yannan, Li Bingzhao, Tao Ran. Research progress on discretization of linear canonical transform[J]. Opto-Electronic Engineering, 2018, 45(6): 170738 Copy Citation Text show less
    References

    [1] Moshinsky M, Quesne C. Linear canonical transformations and their unitary representations[J]. Journal of Mathematical Physics, 1971, 12(8): 1772–1780.

    [2] Collins S A. Lens-system diffraction integral written in terms of matrix optics[J]. Journal of the Optical Society of America, 1970, 60(9): 1168–1177.

    [3] Ozaktas H M, Zalevsky Z, Kutay M A. The Fractional Fourier Transform: with Applications in Optics and Signal Processing[M]. New York: Wiley, 2001.

    [4] Wolf K B. Integral Transforms in Science and Engineering[M]. New York: Plenum, 1979.

    [5] Bernardo L M. ABCD matrix formalism of fractional Fourier optics[J]. Optical Engineering, 1996, 35(3): 732–740.

    [6] James D F V, Agarwal G S. The generalized Fresnel transform and its application to optics[J]. Optics Communications, 1996, 126(4–6): 207–212.

    [7] Hua J W, Liu L R, Li G Q. Extended fractional Fourier transforms[J]. Journal of the Optical Society of America A, 1997, 14(12): 3316–3322.

    [8] Bastiaans M J. Wigner distribution function and its application to first-order optics[J]. Journal of the Optical Society of America, 1979, 69(12): 1710–1716.

    [9] Bartelt H O, Brenner K H, Lohmann A W. The wigner distribution function and its optical production[J]. Optics Communications, 1980, 32(1): 32–38.

    [10] Tao R, Qi L, Wang Y. Theory and Applications of the Fractional Fourier Transform[M]. Beijing: Tsinghua University Press, 2004.

    [11] Tao R, Zhang F, Wang Y. Research progress on discretization of fractional Fourier transform[J]. Science in China Series F: Information Sciences, 2008, 51(7): 859–880.

    [12] Li B Z, Tao R, Xu T Z, et al. The Poisson sum formulae associated with the fractional Fourier transform[J]. Signal Processing, 2009, 89(5): 851–856.

    [13] Lee Q Y, Li B Z, Cheng Q Y. Discrete linear canonical transform of finite chirps[J]. Procedia Engineering, 2012, 29: 3663–3667.

    [14] Liu S H, Shan T, Tao R, et al. Sparse discrete fractional Fourier transform and its applications[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6582–6595.

    [15] Kang X J, Zhang F, Tao R. Multichannel random discrete fractional Fourier transform[J]. IEEE Signal Processing Letters, 2015, 22(9): 1340–1344.

    [16] Kang X J, Tao R, Zhang F. Multiple-parameter discrete fractional transform and its applications[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3402–3417.

    [17] Wang J, Zhang Y D, Li G J, et al. Computation of the cascaded optical fractional Fourier transform under different variable scales[J]. Optics Communications, 2012, 285(6): 997–1000.

    [18] Zhong Z, Zhang Y J, Shan M G, et al. Optical movie encryption based on a discrete multiple-parameter fractional Fourier transform[J]. Journal of Optics, 2014, 16(12): 125404.

    [19] Sejdi E, Djurovi I, Stankovi L. Fractional Fourier transform as a signal processing tool: an overview of recent developments[J]. Signal Processing, 2011, 91(6): 1351–1369.

    [20] Li B Z, Tao R, Wang Y. Fractional spectrum of non-uniformly sampled signals[J]. Acta Electronica Sinica, 2006, 34(12): 2146–2149.

    [21] Barshan B, Kutay M A, Ozaktas H M. Optimal filtering with linear canonical transformations[J]. Optics Communications, 1997, 135(1–3): 32–36.

    [22] Pei S C, Ding J J. Closed-Form discrete fractional and affine Fourier transforms[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1338–1353.

    [23] Ding J J, Pei S C. Additive discrete linear canonical transform and other additive discrete operations[C]//Proceedings of the 2011 9th European Signal Processing Conference, 2011: 2249–2253.

    [24] Pei S C, Lai Y C. Discrete linear canonical transforms based on dilated Hermite functions[J]. Journal of the Optical Society of America A, 2011, 28(8): 1695–1708.

    [25] Pei S C, Huang S G. Fast discrete linear canonical transform based on CM-CC-CM Decomposition and FFT[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 855–866.

    [26] Ding J J, Pei S C, Liu C L. Improved implementation algorithms of the two-dimensional nonseparable linear canonical transform[J]. Journal of the Optical Society of America A, 2012, 29(8): 1615–1624.

    [27] Pei S C, Ding J J. Eigenfunctions of linear canonical transform[J]. IEEE Transactions on Signal Processing, 2002, 50(1): 11–26.

    [28] Pei S C, Ding J J. Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms[J]. Journal of the Optical Society of America A, 2003, 20(3): 522–532.

    [29] Ding J J, Pei S C. Eigenfunctions and self-imaging phenomena of the two-dimensional nonseparable linear canonical transform[J]. Journal of the Optical Society of America A, 2011, 28(2): 82–95.

    [30] Pei S C, Ding J J. Two-dimensional affine generalized fractional Fourier transform[J]. IEEE Transactions on Signal Processing, 2001, 49(4): 878–897.

    [31] Ding J J, Pei S C. Heisenberg's uncertainty principles for the 2-D nonseparable linear canonical transforms[J]. Signal Processing, 2013, 93(5): 1027–1043.

    [32] Pei S C, Huang S G. Two-dimensional nonseparable discrete linear canonical transform based on CM-CC-CM-CC decomposition[J]. Journal of the Optical Society of America A, 2016, 33(2): 214–227.

    [33] Pei S C, Huang S G. Reversible joint hilbert and linear canonical transform without distortion[J]. IEEE Transactions on Signal Processing, 2013, 61(19): 4768–4781.

    [34] Pei S C, Lai Y C. Derivation and discrete implementation for analytic signal of linear canonical transform[J]. Journal of the Optical Society of America A, 2013, 30(5): 987–992.

    [35] Stern A. Sampling of linear canonical transformed signals[J]. Signal Processing, 2006, 86(7): 1421–1425.

    [36] Stern A. Why is the linear canonical transform so little known [C]//Proceedings of the 5th International Workshop on Informational Optics, 2006: 225–234.

    [37] Li B Z, Tao R, Wang Y. New sampling formulae related to linear canonical transform[J]. Signal Processing, 2007, 87(5): 983–990.

    [38] Tao R, Li B Z, Wang Y, et al. On sampling of band-limited signals associated with the linear canonical transform[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5454–5464.

    [39] Li B Z, Xu T Z. Sampling in the linear canonical transform domain[J]. Mathematical Problems in Engineering, 2012, 2012: 504580.

    [40] Shi J, Liu X P, Zhang Q Y, et al. Sampling theorems in function spaces for frames associated with linear canonical transform[J]. Signal Processing, 2014, 98: 88–95.

    [42] Deng B, Tao R, Wang Y. Convolution theorems for the linear canonical transform and their applications[J]. Science in China Series F: Information Sciences, 2006, 49(5): 592–603.

    [43] Healy J J, Kutay M A, Ozaktas H M, et al. Linear Canonical Transforms: Theory and Applications[M]. New York: Springer, 2016.

    [44] Xu G L, Wang X T, Xu X G. Three uncertainty relations for real signals associated with linear canonical transform[J]. IET Signal Processing, 2009, 3(1): 85–92.

    [45] Zhang Z C. Unified Wigner-Ville distribution and ambiguity function in the linear canonical transform domain[J]. Signal Processing, 2015, 114: 45–60.

    [46] Bai R F, Li B Z, Cheng Q Y. Wigner-Ville distribution associated with the linear canonical transform[J]. Journal of Applied Mathematics, 2012, 2012: 740161.

    [47] Che T W, Li B Z, Xu T Z. The ambiguity function associated with the linear canonical transform[J]. Eurasip Journal on Advances in Signal Processing, 2012, 2012: 138.

    [48] Guo Y, Li B Z. Blind image watermarking method based on linear canonical wavelet transform and QR decomposition[J]. IET Image Processing, 2016, 10(10): 773–786.

    [49] Xu X N, Li B Z, Ma X L. Instantaneous frequency estimation based on the linear canonical transform[J]. Journal of the Franklin Institute, 2012, 349(10): 3185–3193.

    [50] Song Y E, Zhang X Y, Shang C H, et al. The Wigner-Ville distribution based on the linear canonical transform and its applications for QFM signal parameters estimation[J]. Journal of Applied Mathematics, 2014, 2014: 516457.

    [51] Goel N, Singh K, Saxena R, et al. Multiplicative filtering in the linear canonical transform domain[J]. IET Signal Processing, 2016, 10(2): 173–181.

    [52] Feng Q, Li B Z. Convolution and correlation theorems for the two-dimensional linear canonical transform and its applications[J]. IET Signal Processing, 2016, 10(2): 125–132.

    [53] Yu Y X, Wang C Y, Chen Y, et al. A fast algorithm of linear canonical transformation for radar signal processing system[J]. Advanced Materials Research, 2014, 1049–1050: 1245–1248.

    [54] Ding J J, Pei S C. Linear canonical transform[J]. Advances in Imaging and Electron Physics, 2014, 186: 39–99.

    [55] Qiu W, Li B Z, Li X W. Speech recovery based on the linear canonical transform[J]. Speech Communication, 2013, 55(1): 40–50.

    [56] Ozaktas H M, Arikan O, Kutay M A. Digital computation of the fractional Fourier transform[J]. IEEE Transactions on Signal Processing, 1996, 44(9): 2141–2150.

    [57] Hennelly B M, Sheridan J T. Fast numerical algorithm for the linear canonical transform[J]. Journal of the Optical Society of America A, 2005, 22(5): 928–937.

    [58] Hennelly B M, Sheridan J T. Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms[J]. Journal of the Optical Society of America A, 2005, 22(5): 917–927.

    [59] Bultheel A, Sulbaran H E M. Computation of the fractional Fourier transform[J]. Applied and Computational Harmonic Analysis, 2004, 16(3): 182–202.

    [60] Bultheel A, Sulbaran H E M. Recent developments in the theory of the fractional Fourier and linear canonical transforms[J]. Bulletin of the Belgian Mathematical Society, Simon Stevin, 2006, 13(5): 971–1005.

    [61] Cariolaro G, Erseghe T, Kraniauskas P, et al. A unified framework for the fractional Fourier transform[J]. IEEE Transactions on Signal Processing, 1998, 46(12): 3206–3219.

    [62] Erseghe T, Laurenti N, Cellini V. A multicarrier architecture based upon the affine Fourier transform[J]. IEEE Transactions on Communications, 2005, 53(5): 853–862.

    [63] Oktem F S, Ozaktas H M. Exact relation between continuous and discrete linear canonical transforms[J]. IEEE Signal Processing Letters, 2009, 16(8): 727–730.

    [64] Erseghe T, Kraniauskas P, Carioraro G. Unified fractional Fourier transform and sampling theorem[J]. IEEE Transactions on Signal Processing, 1999, 47(12): 3419–3423.

    [65] Wei D Y, Ran Q W, Li Y M. Sampling of bandlimited signals in the linear canonical transform domain[J]. Signal, Image and Video Processing, 2013, 7(3): 553–558.

    [66] Wei D Y, Li Y M. Sampling and series expansion for linear canonical transform[J]. Signal, Image and Video Processing, 2014, 8(6): 1095–1101.

    [67] Wei D Y, Li Y M. The dual extensions of sampling and series expansion theorems for the linear canonical transform[J]. Optik -International Journal for Light and Electron Optics, 2015, 126(24): 5163–5167.

    [68] Zhao J, Tao R, Wang Y. Sampling rate conversion for linear canonical transform[J]. Signal Processing, 2008, 88(11): 2825–2832.

    [69] Oktem F S, Ozaktas H M. Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product[J]. Journal of the Optical Society of America A, 2010, 27(8): 1885–1895.

    [70] Healy J J, Sheridan J T. Cases where the linear canonical transform of a signal has compact support or is band-limited[J]. Optics Letters, 2008, 33(3): 228–230.

    [71] Zhao L, Healy J J, Sheridan J T. Unitary discrete linear canonical transform: analysis and application[J]. Applied Optics, 2013, 52(7): C30-C36.

    [72] Ding J J. Research of fractional Fourier transform and linear canonical transform[D]. Taipei: National Taiwan University, 2001.

    [73] Healy J J, Sheridan J T. Sampling and discretization of the linear canonical transform[J]. Signal Processing, 2009, 89(4): 641–648.

    [74] Healy J J, Sheridan J T. New fast algorithm for the numerical computation of quadratic-phase integrals[J]. Proceedings of SPIE, 2006, 6313: 63130J.

    [75] Healy J J, Sheridan J T. Applications of fast algorithms for the numerical calculation of optical signal transforms[J]. Proceedings of SPIE, 2006, 6187: 618713.

    [76] Healy J J, Sheridan J T. Time division fast linear canonical transform[C]//Proceedings of 2006 IET Irish Signals and Systems Conference, 2006: 135–138.

    [77] Healy J J, Sheridan J T. Fast linear canonical transforms[J]. Journal of the Optical Society of America A, 2010, 27(1): 21–30.

    [78] Duhamel P. Implementation of "Split-radix" FFT algorithms for complex, real, and real-symmetric data[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(2): 285–295.

    [79] Duhamel P, Vetterli M. Fast fourier transforms: a tutorial review and a state of the art[J]. Signal Processing, 1990, 19(4): 259–299.

    [80] Lohmann A W, Dorsch R G, Mendlovic D, et al. Space–bandwidth product of optical signals and systems[J]. Journal of the Optical Society of America A, 1996, 13(3): 470–473.

    [81] Qian S E, Chen D P. Decomposition of the Wigner-Ville distribution and time-frequency distribution series[J]. IEEE Transactions on Signal Processing, 1994, 42(10): 2836–2842.

    [82] Cohen L. Time-frequency Analysis[M]. Englewood Cliffs, NJ: Prentice-Hall, 1995.

    [83] Hlawatsch F, Boudreaux-Bartels G F. Linear and quadratic time-frequency signal representations[J]. IEEE Signal Processing Magazine, 1992, 9(2): 21–67.

    [84] Li Y G, Li B Z, Sun H F. Uncertainty principles for Wigner-Ville distribution associated with the linear canonical transforms[J]. Abstract and Applied Analysis, 2014, 2014: 470459.

    [85] Yan J P, Li B Z, Chen Y H, et al. Wigner distribution moments associated with the linear canonical transform[J]. International Journal of Electronics, 2013, 100(4): 473–481.

    [86] Zayed A L. On the relationship between the Fourier and fractional fourier transforms[J]. IEEE Signal Processing Letters, 1996, 3(12): 310–311.

    [87] Ozaktas H M, Mendlovic D. Fractional Fourier transforms and their optical implementation. II[J]. Journal of the Optical Society of America A, 1993, 10(12): 2522–2531.

    [88] Ozaktas H M, Mendlovic D. Fractional Fourier optics[J]. Journal of the Optical Society of America A, 1995, 12(4): 743–751.

    [89] Ozaktas H M, Barshan B, Mendlovic D, et al. Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms[J]. Journal of the Optical Society of America A, 1994, 11(2): 547–559.

    [90] Irfan M, Zheng L Y, Shahzad H. Review of computing algorithms for discrete fractional Fourier transform[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6(11): 1911–1919.

    [91] Ko A, Ozaktas H M, Candan C, et al. Digital computation of linear canonical transforms[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2383–2394.

    [92] Crochiere R E, Rabiner L R. Interpolation and decimation of digital signals—A tutorial review[J]. Proceedings of the IEEE, 1981, 69(3): 300–331.

    [93] Valenzuela R A, Constantinides A G. Digital signal processing schemes for efficient interpolation and decimation[J]. IEE Proceedings G - Electronic Circuits and Systems, 1983, 130(6): 225–235.

    [94] Samantaray L, Panda R. Signal decimation and interpolation in fractional domain using non-linear basis functions[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2013, 6(4): 415–430.

    [95] Cooley J W, Tukey J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(90): 297–301.

    [96] Cochran W, Cooley J, Favin D, et al. What is the fast Fourier transform [J]. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 45–55.

    [97] Kelly D P. Numerical calculation of the Fresnel transform[J]. Journal of the Optical Society of America A, 2014, 31(4): 755–764.

    [98] Kelly D P, Hennelly B M, Rhodes W T, et al. Numerical implementation of the Fresnel transform, and its application in linear optical systems[J]. Proceedings of SPIE, 2005, 5908: 59080F.

    [99] Falconer D G, Winthrop J T. Fresnel transform spectroscopy[J]. Physics Letters, 1965, 14(3):190–191.

    [100] Lang J, Tao R, Wang Y. The discrete multiple-parameter fractional Fourier transform[J]. Science China(Information Sciences), 2010, 53(11):2287–2299.

    [101] Deng X G, Bihari B, Gan J H, et al. Fast algorithm for chirp transforms with zooming-in ability and its applications[J]. Journal of the Optical Society of America A, 2000, 17(4): 762–771.

    [102] Ran Q W, Zhang H Y, Zhang Z Z, et al. The analysis of the discrete fractional Fourier transform algorithms[C]//Electrical and Computer Engineering, 2009. CCECE '09. Canadian, 2009: 979–982.

    [103] Deng X G, Li Y P, Fan D Y, et al. A fast algorithm for fractional Fourier transforms[J]. Optics Communications, 1997, 138(4–6): 270–274.

    [104] Serbes A, Durak-Ata L. The discrete fractional Fourier transform based on the DFT matrix[J]. Signal Processing, 2011, 91(3): 571–581.

    [105] Narayanan V A, Prabhu K M M. The fractional Fourier transform: theory, implementation and error analysis[J]. Microprocessors and Microsystems, 2003, 27(10): 511–521.

    [106] Sypek M. Light propagation in the Fresnel region. New numerical approach[J]. Optics Communications, 1995, 116(1–3): 43–48.

    [107] Mendlovic D, Zalevsky Z, Konforti N. Computation considerations and fast algorithms for calculating the diffraction integral[J]. Journal of Modern Optics, 1997, 44(2): 407–414.

    [108] Rhodes W T. Numerical simulation of Fresnel-regime wave propagation: the light-tube model[J]. Proceedings of SPIE, 2001, 4436: 21–26.

    [109] Nazarathy M, Shamir J. First-order optics—a canonical operator representation: lossless systems[J]. Journal of the Optical Society of America, 1982, 72(3): 356–364.

    [110] Papoulis A. Signal Analysis[M]. New York: McGraw Hill, 1977.

    [111] García J, Mas D, Dorsch R G. Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm[J]. Applied Optics, 1996, 35(35): 7013–7018.

    [112] Marinho F J, Bernardo L M. Numerical calculation of fractional Fourier transforms with a single fast-Fourier-transform algorithm[J]. Journal of the Optical Society of America A, 1998, 15(8): 2111–2116.

    [113] Mas D, Garcia J, Ferreira C, et al. Fast algorithms for free-space diffraction patterns calculation[J]. Optics Communications, 1999, 164(4–6): 233–245.

    [114] Zhao X H, Deng B, Tao R. Dimensional normalization in the digital computation of the fractional Fourier transform[J]. Transactions of Beijing Institute of Technology, 2005, 25(4): 360–364.

    [115] Alieva T, Bastiaans M J. Alternative representation of the linear canonical integral transform[J]. Optics Letters, 2005, 30(24): 3302–3304.

    [116] Bastiaans M J, Alieva T. Synthesis of an arbitrary ABCD system with fixed lens positions[J]. Optics Letter, 2006, 31(16): 2414–2416.

    [117] Tao R, Liang G P, Zhao X H. An efficient FPGA-based implementation of fractional Fourier transform algorithm[J]. Journal of Signal Processing Systems, 2010, 60(1): 47–58.

    [118] Yang X P, Tan Q F, Wei X F, et al. Improved fast fractional-Fourier-transform algorithm[J]. Journal of the Optical Society of America A, 2004, 21(9): 1677–1681.

    [119] Pei S C, Lai Y C. Signal scaling by centered discrete dilated hermite functions[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 498–503.

    [120] Koc A, Ozaktas H M, Hesselink L. Fast and accurate algorithms for quadratic phase integrals in optics and signal processing[J]. Proceedings of SPIE, 2011, 8043: 804304.

    [121] Ozaktas H M, Koc A, Sari I, et al. Efficient computation of quadratic-phase integrals in optics[J]. Optics Letters, 2006, 31(1): 35–37.

    [122] Healy J J, Kutay M A, Ozaktas H M, et al. Linear Canonical Transforms: Theory and Applications[M]. New York: Springer, 2016.

    [123] Healy J J, Sheridan J T. Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms[J]. Optics Letters, 2010, 35(7): 947–949.

    [124] Campos R G, Figueroa J. A fast algorithm for the linear canonical transform[J]. Signal Processing, 2011, 91(6): 1444–1447.

    [125] Campos R G, Juárez L Z. A discretization of the continuous fourier transform[J]. Nuovo Cimento B (1971-1996), 1992, 107(6): 703–711.

    [126] Zhang W L, Li B Z, Cheng Q Y. A new discretization algorithm of linear canonical transform[J]. Procedia Engineering, 2012, 29: 930–934.

    [127] Namias V. The fractional order Fourier transform and its application to quantum mechanics[J]. IMA Journal of Applied Mathematics, 1980, 25(3): 241–265.

    [128] Wei D Y, Wang R K, Li Y M. Random discrete linear canonical transform[J]. Journal of the Optical Society of America A, 2016, 33(12): 2470–2476.

    [129] Zhang F, Tao R, Wang Y. Discrete linear canonical transform computation by adaptive method[J]. Optics Express, 2013, 21(15): 18138–18151.

    [130] Wolf K B. Canonical transforms. I. Complex linear transforms[J]. Journal of Mathematical Physics, 1974, 15(8): 1295–1301.

    [131] Wolf K B. Canonical transforms. II. Complex radial transforms[J]. Journal of Mathematical Physics, 1974, 15(12): 2102–2111.

    [132] Kramer P, Moshinsky M, Seligman T H. Complex extensions of canonical transformations and quantum mechanics[M]//Inui E, Tanabe Y, Onodera Y. Group Theory and Its Applications. New York: Academic Press, 1975: 249–332.

    [133] Ko A, Ozaktas H M, Hesselink L. Fast and accurate algorithm for the computation of complex linear canonical transforms[J]. Journal of the Optical Society of America A, 2010, 27(9): 1896–1908.

    [134] Liu C G, Wang D Y, Healy J J, et al. Digital computation of the complex linear canonical transform[J]. Journal of the Optical Society of America A, 2011, 28(7): 1379–1386.

    [135] Pei S C, Huang S G. Fast and accurate computation of normalized Bargmann transform[J]. Journal of the Optical Society of America A, 2017, 34(1): 18–26.

    [136] Fan H Y, Chen J H. EPR entangled state and generalized Bargmann transformation[J]. Physics Letters A, 2002, 303(5–6): 311–317.

    [137] Abreu Lís D. Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions[J]. Applied and Computational Harmonic Analysis, 2010, 29(3): 287–302.

    [138] Zayed A I. Chromatic expansions and the bargmann transform[M]//Shen X P, Zayed A I. Multiscale Signal Analysis and Modeling. New York: Springer, 2013.

    Sun Yannan, Li Bingzhao, Tao Ran. Research progress on discretization of linear canonical transform[J]. Opto-Electronic Engineering, 2018, 45(6): 170738
    Download Citation