• Journal of Inorganic Materials
  • Vol. 34, Issue 3, 328 (2019)
Wei WANG1, Shi-Jie LUO1, Cong XIAN1, Qun XIAO1, Yang YANG2, Yun OU3, Yun-Ya LIU1, Shu-Hong XIE4, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]2, [in Chinese]3, [in Chinese]1, and [in Chinese]4
Author Affiliations
  • 11. Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
  • 22. Department of Mechanical Engineering, University of Washington, Seattle WA 98195-2600, USA
  • 33. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China
  • 44. Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan 411105, China
  • show less
    DOI: 10.15541/jim20180261 Cite this Article
    Wei WANG, Shi-Jie LUO, Cong XIAN, Qun XIAO, Yang YANG, Yun OU, Yun-Ya LIU, Shu-Hong XIE, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Enhanced Thermoelectric Properties of Hydrothermal Synthesized BiCl3/Bi2S3 Composites[J]. Journal of Inorganic Materials, 2019, 34(3): 328 Copy Citation Text show less
    References

    [1] Y PEI, X SHI, A LALONDE et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473, 66-69(2011).

    [2] E BELL L. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461(2008).

    [3] J DISALVO F. Thermoelectric cooling and power generation. Science, 285, 703-706(1999).

    [4] S LIU W, F LI J, D ZHAO L et al. High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2, 152-158(2010).

    [5] J SNYDER G, S TOBERER E. Complex thermoelectric materials. Nature Materials, 7, 105-114(2008).

    [6] Y MA F, H LEI C, Y YANG et al. Is thermoelectric conversion efficiency of a composite bounded by its constituents. Applied Physics Letters, 102, 053905-1-4(2013).

    [7] Y MA F, Y YANG, H XIE S et al. On the effective thermoelectric properties of layered heterogeneous medium. Journal of Applied Physics, 111, 013510-1-7(2012).

    [8] J ZIDE, W KIM, A GOSSARD et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Physical Review Letters, 96, 045901-1-4(2006).

    [9] H MUTA, K KUROSAKI, A IEDA et al. Substitution effect on the thermoelectric properties of alkaline earth titanate. MaterialsLetters, 58, 3868-3871(2004).

    [10] F MA, S WANG, E NASR ESFAHANI et al. Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy. National Science Review, 5, 59-69(2017).

    [11] L CHEN, Y LIU, J LI. Precipitate morphologies of pseudobinary Sb2Te3-PbTe thermoelectric compounds. Acta Materialia, 65, 308-315(2014).

    [12] Y MA F, Y YANG, H LEI C et al. Nonlinear asymptotic homogenization and the effective behavior of layered thermoelectric composites. Journal of the Mechanics and Physics of Solids, 61, 1768-1783(2013).

    [13] J JIANG, Y NIU, C WANG et al. Hybrid thermoelectric battery electrode FeS2 study. Nano Energy, 45, 432-438(2018).

    [14] H DUGHAISH Z. Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B: Condensed Matter, 322, 205-223(2002).

    [15] V JOVOVIC, S TOBERER E, P HEREMANS J et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 321, 554-557(2008).

    [16] B POUDEL, Q HAO, Y MA et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 320, 634-638(2008).

    [17] B ZHAO X, J ZHU T, Q CAO Y et al. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Applied Physics Letters, 92, 143106-1-3(2008).

    [18] A SEGURA, J MARTINEZ-PASTOR, A CANTARERO et al. Transport properties of bismuth sulfide single crystals. Physical Review B, 35, 9586-9590(1987).

    [19] K BISWAS, D ZHAO L, G KANATZIDIS M. Tellurium-free thermoelectric: the anisotropic n-type semiconductor Bi2S3. Advanced Energy Materials, 2, 634-638(2012).

    [20] F GUO C, W LIU, M YAO et al. Bi2S3 nanonetwork as precursor for improved thermoelectric performance. Nano Energy, 4, 113-122(2014).

    [21] C UHER, B CHEN, L IORDANIDIS et al. Transport properties of Bi2S3 and the ternary bismuth sulfides KBi6.33S10 and K2Bi8S13. Chemistry of Materials, 9, 1655-1658(1997).

    [22] D CHEN L, Q YAO, C LIUFU S et al. Assembly of one-dimensional nanorods into Bi2S3 films with enhanced thermoelectric transport properties. Applied Physics Letters, 90, 112106-1-3(2007).

    [23] P ZHANG B, H GE Z, Y LIU et al. Nanostructured Bi2-xCuxS3 bulk materials with enhanced thermoelectric performance. Physical Chemistry Chemical Physics, 14, 4475-4481(2012).

    [24] P ZHANG B, Q YU Y, H GE Z et al. Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Materials Chemistry and Physics, 131, 216-222(2011).

    [25] X DU, F CAI, X WANG. Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 587, 6-9(2014).

    [26] F ZHOU Z, X YANG X, Y WANG et al. Raman spectroscopy determination of the Debye temperature and atomic cohesive energy of CdS, CdSe, Bi2Se3,Sb2Te3 nanostructures. Journal of Applied Physics, 112, 083508-1-6(2012).

    [27] S THONGTEM, A PHURUANGRAT, T THONGTEM. Characterization of Bi2S3 nanorods and nano-structured flowers prepared by a hydrothermal method. Materials Letters, 63, 1496-1498(2009).

    [28] P ZHANG B, D ZHAO L, S LIU W et al. Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Journal of Solid State Chemistry, 181, 3278-3282(2008).

    [29] D ZHAO L, H LO S, Y ZHANG et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 508, 373-377(2014).

    [30] M ZHOU, J ZHAO, M HAN Y et al. Thermoelectric performance of SnS and SnS-SnSe solid solution. Journal of Materials Chemistry A, 3, 4555-4559(2015).

    [31] G KANATZIDIS M, D ZHAO L, G TAN. Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 116, 12123-12149(2016).

    [32] P QIN, S HE D, H GE Z et al. Highly enhanced thermoelectric properties of Bi/Bi2S3 nanocomposites. ACS Applied Materials & Interfaces, 9, 4828-4834(2017).

    [33] J YAN, G LIU, J YANG et al. Enhanced the thermoelectric properties of n-type Bi2S3 polycrystalline by iodine doping. Journal of Alloys and Compounds, 728, 351-356(2017).

    [34] P ZHANG B, H GE Z, J ZHANG L et al. Fabrication and properties of Bi2S3-xSex thermoelectric polycrystals. Solid State Communications, 162, 48-52(2013).

    Wei WANG, Shi-Jie LUO, Cong XIAN, Qun XIAO, Yang YANG, Yun OU, Yun-Ya LIU, Shu-Hong XIE, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Enhanced Thermoelectric Properties of Hydrothermal Synthesized BiCl3/Bi2S3 Composites[J]. Journal of Inorganic Materials, 2019, 34(3): 328
    Download Citation