• Journal of Inorganic Materials
  • Vol. 36, Issue 4, 372 (2021)
Fengnian ZHANG, Meng GUO, Yang MIAO*, Feng GAO, Chufei CHENG, Fuhao CHENG, and Yufeng LIU
Author Affiliations
  • College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.15541/jim20200374 Cite this Article
    Fengnian ZHANG, Meng GUO, Yang MIAO, Feng GAO, Chufei CHENG, Fuhao CHENG, Yufeng LIU. Preparation and Sintering Behavior of High Entropy Ceramic (Zr1/7Hf1/7Ce1/7Y2/7La2/7)O2-δ[J]. Journal of Inorganic Materials, 2021, 36(4): 372 Copy Citation Text show less
    References

    [1] B MIRACLE D, N SENKOV O. A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511(2017).

    [2] M ZHU J, M FU H, F ZHANG et al. Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. Materials Science and Engineering: A, 527, 7210-7214(2010).

    [3] Z SZKLARZ, J LEKKI, P BOBROWSKI et al. The effect of SiC nanoparticles addition on the electrochemical response of mechanically alloyed CoCrFeMnNi high entropy alloy. Materials Chemistry and Physics, 215, 385-392(2018).

    [4] M TSAI, W WANG C, W TSAI C et al. Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization. Journal of The Electrochemical Society, 158, H1161-H1165(2011).

    [5] M ROST C, E SACHET, T BORMAN et al. Entropy-stabilized oxides. Nature Communications, 6, 8485(2015).

    [6] F WEI X, X LIU J, F LI et al. High entropy carbide ceramics from different starting materials. Journal of the European Ceramic Society, 39, 2989-2994(2019).

    [7] T JIN, H SANG X, R UNOCIC R et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 30, 1707512(2018).

    [8] X LIU J, Q SHEN X, Y WU et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics. Journal of Advanced Ceramics, 9, 503-510(2020).

    [9] Y QIN, X LIU J, F LI et al. A high entropy silicide by reactive spark plasma sintering. Journal of Advanced Ceramics, 8, 148-152(2019).

    [10] Q CHEN X, Q WU Y. High-entropy transparent fluoride laser ceramics. Journal of the American Ceramic Society, 103, 750-756(2020).

    [11] Z ZHANG R, F GUCCI, Y ZHU H et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorganic Chemistry, 57, 13027-13033(2018).

    [12] R DJENADIC, A SARKAR, O CLEMENS et al. Multicomponent equiatomic rare earth oxides. Materials Research Letters, 5, 102-109(2017).

    [13] Q MAO A, Z XIANG H, G ZHANG Z et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. Journal of Magnetism and Magnetic Materials, 484, 245-252(2019).

    [14] W XING Q, Q XIA S, H YAN X et al. Mechanical properties and thermal stability of (NbTiAlSiZr)Nx high-entropy ceramic films at high temperatures. Journal of Materials Research, 33, 3347-3354(2018).

    [15] L CHEN, K WANG, T SU W et al. Research progress of transition metal non-oxide high-entropy ceramics. Journal of Inorganic Materials, 35, 748-758(2020).

    [16] H CHEN, N QIU, Z WU B et al. Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O solid solutions to achieve superior lithium-storage properties. RSC Advances, 9, 28908-28915(2019).

    [17] D BÉRARDAN, S FRANGER, D DRAGOE et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi, 10, 328-333(2016).

    [18] J ZHANG J, Q YAN J, S CALDER et al. Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chemistry of Materials, 31, 3705-3711(2019).

    [19] D BéRARDAN, S FRANGER, K MEENA A et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 4, 9536-9541(2016).

    [20] H CHEN, J FU, F ZHANG P et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. Journal of Materials Chemistry A, 6, 11129-11133(2018).

    [21] H CHEN, W LIN W, H ZHANG Z et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Materials Letters, 1, 83-88(2019).

    [22] A SARKAR, R DJENADIC, D WANG et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 38, 2318-2327(2018).

    [23] P PU Y, W ZHANG Q, R LI et al. Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic. Applied Physics Letters, 115, 223901(2019).

    [24] J LIU, K REN, Y MA C et al. Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic. Ceramics International, 46, 20576-20581(2020).

    [25] P EDALATI, Q WANG, H RAZAVI-KHOSROSHAHI et al. Photocatalytic hydrogen evolution on a high-entropy oxide. Journal of Materials Chemistry A, 8, 3814-3821(2020).

    [26] T WANG, H CHEN, Z YANG et al. High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis. Journal of the American Chemical Society, 142, 4550-4554(2020).

    [27] M FRACCHIA, M MANZOLI, U ANSELMI-TAMBURINI et al. A new eight-cation inverse high entropy spinel with large configurational entropy in both tetrahedral and octahedral sites: Synthesis and cation distribution by X-ray absorption spectroscopy. Scripta Materialia, 188, 26-31(2020).

    [28] D WANG, D JIANG S, Q DUAN C et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. Journal of Alloys and Compounds, 844, 156158(2020).

    [29] Q MAO A, F QUAN, Z XIANG H et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. Journal of Molecular Structure, 1194, 11-18(2019).

    [30] B WANG J, D STENZEL, R AZMI et al. Spinel to rock-salt transformation in high entropy oxides with Li incorporation. Electrochem, 1, 60-74(2020).

    [31] F LI, L ZHOU, X LIU J et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 8, 576-582(2019).

    [32] H CHEN, F ZHAO Z, M XIANG H et al. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: a novel high temperature stable thermal barrier material. Journal of Materials Science & Technology, 48, 57-62(2020).

    [33] F ZHAO Z, H CHEN, M XIANG H et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: a high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3. Journal of Materials Science & Technology, 35, 2892-2896(2019).

    [34] H CHEN, M XIANG H, Z DAI F et al. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. Journal of Materials Science & Technology, 36, 134-139(2020).

    [35] A VINNIK D, A TROFIMOV E, E ZHIVULIN V et al. The new extremely substituted high entropy (Ba,Sr,Ca,La)Fe6-x (Al,Ti,Cr,Ga,In,Cu,W)xO19 microcrystals with magnetoplumbite structure. Ceramics International, 46, 9656-9660(2020).

    [36] A VINNIK D, E ZHIVULIN V, A TROFIMOV E et al. Extremely polysubstituted magnetic material based on magnetoplumbite with a hexagonal structure: synthesis, structure, properties, prospects. Nanomaterials (Basel), 9, 559(2019).

    [37] J SKINNER S, A KILNER J. Oxygen ion conductors. Materials Today, 6, 30-37(2003).

    [38] I SACHKOV V, A NEFEDOV R, V AMELICHKIN I. High entropy oxide systems based on rare earth elements. IOP Conference Series: Materials Science and Engineering, 597, 012005(2019).

    [39] M PIANASSOLA, M LOVEDAY, W MCMURRAY J et al. Solid-state synthesis of multicomponent equiatomic rare-earth oxides. Journal of the American Ceramic Society, 103, 2908-2918(2020).

    [40] A SARKAR, C LOHO, L VELASCO et al. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton Trans., 46, 12167-12176(2017).

    [41] J GILD, M SAMIEE, L BRAUN J et al. High-entropy fluorite oxides. Journal of the European Ceramic Society, 38, 3578-3584(2018).

    [42] D SHANNON R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32, 751-767(1976).

    [43] J WRIGHT A, Y WANG Q, Y HUANG C et al. From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides. Journal of the European Ceramic Society, 40, 2120-2129(2020).

    [44] C LIU Y, C JIA D, Y ZHOU et al. Zn0.1Ca0.1Sr0.4Ba0.4ZrO3: a non-equimolar multicomponent perovskite ceramic with low thermal conductivity. Journal of the European Ceramic Society, 40, 6272-6277(2020).

    [45] C ARTINI, M PANI, M CARNASCIALI M et al. Structural features of Sm- and Gd-doped ceria studied by synchrotron X-ray diffraction and μ-Raman spectroscopy. Inorganic Chemistry, 54, 4126-4137(2015).

    [46] H TOBY B. EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210-213(2001).

    [47] P CHEN K, T PEI X, L TANG et al. A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society, 38, 4161-4164(2018).

    [48] N DRAGOE, D BéRARDAN. Order emerging from disorder. Science, 366, 573(2019).

    [49] H CHEN, M XIANG H, Z DAI F et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. Journal of Materials Science & Technology, 35, 1700-1705(2019).

    [50] J WRIGHT A, Y WANG Q, T KO S et al. Size disorder as a descriptor for predicting reduced thermal conductivity in medium- and high-entropy pyrochlore oxides. Scripta Materialia, 181, 76-81(2020).

    [51] Y KURODA, H HAMANO, T MORI et al. Specific adsorption behavior of water on a Y2O3 surface. Langmuir, 16, 6937-6947(2000).

    [52] L SPIRIDIGLIOZZI, C FERONE, R CIOFFI et al. Entropy-stabilized oxides owning fluorite structure obtained by hydrothermal treatment. Materials, 16, 6937-6947(2000).

    [53] H CHEN, F ZHAO Z, M XIANG H et al. Effect of reaction routes on the porosity and permeability of porous high entropy (Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 for transpiration cooling. Journal of Materials Science & Technology, 38, 80-85(2020).

    [54] F CUI S, S YANG W, N QIAN Z. Research thermal decomposition fo lanthanum hydroxide by thermogravimetry. Chemical Journal of Chinese University, 8, 271-272(1987).

    [55] C SURYANARAYANA. Mechanical alloying and milling. Progress in Materials Science, 46, 1-184(2001).

    [56] J HARRINGTON T, J GILD, P SARKER et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Materialia, 166, 271-280(2019).

    Fengnian ZHANG, Meng GUO, Yang MIAO, Feng GAO, Chufei CHENG, Fuhao CHENG, Yufeng LIU. Preparation and Sintering Behavior of High Entropy Ceramic (Zr1/7Hf1/7Ce1/7Y2/7La2/7)O2-δ[J]. Journal of Inorganic Materials, 2021, 36(4): 372
    Download Citation