• Laser & Optoelectronics Progress
  • Vol. 56, Issue 4, 041603 (2019)
Yaru Wang1, Lanju Liang1, Maosheng Yang1、2, Xujuan Wang1, and Yan Wang1、*
Author Affiliations
  • 1 College of Optoelectronic Engineering, Zaozhuang University, Zaozhuang, Shandong 277160, China
  • 2 College of Precision Instrument and Optoelectronics Engineering, Institute of Laser and Opto-Electronics, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP56.041603 Cite this Article Set citation alerts
    Yaru Wang, Lanju Liang, Maosheng Yang, Xujuan Wang, Yan Wang. Terahertz Metamaterial Based on Controllable Electromagnetic Induced Transparency Structure[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041603 Copy Citation Text show less
    References

    [1] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 77, 633(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RMPHAT000077000002000633000001&idtype=cvips&gifs=Yes

    [2] Chiam S Y, Singh R, Rockstuhl C et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Physical Review B, 80, 153103(2009). http://ieeexplore.ieee.org/document/6332851/

    [3] Li Z Y, Ma Y F, Huang R et al. Manipulating the plasmon-induced transparency in terahertz metamaterials[J]. Optics Express, 19, 8912-8919(2011). http://europepmc.org/abstract/MED/21643144

    [4] Papasimakis N, Fedotov V A, Zheludev N I et al. Metamaterial analog of electromagnetically induced transparency[J]. Physical Review Letters, 101, 253903(2008). http://www.opticsinfobase.org/abstract.cfm?URI=META-2007-ThBPDP6

    [5] Tassin P, Zhang L, Koschny T et al. Low-loss metamaterials based on classical electromagnetically induced transparency[J]. Physical Review Letters, 102, 053901(2009). http://europepmc.org/abstract/med/19257513

    [6] Papasimakis N, Fu Y H, Fedotov V A et al. Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency[J]. Applied Physics Letters, 94, 211902(2009). http://scitation.aip.org/content/aip/journal/apl/94/21/10.1063/1.3138868

    [7] Tassin P, Zhang L, Koschny T et al. Planar designs for electromagnetically induced transparency in metamaterials[J]. Optics Express, 17, 5595-5605(2009). http://www.ncbi.nlm.nih.gov/pubmed/19333327

    [8] Zhang S, Genov D A, Wang Y et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 101, 047401(2008). http://europepmc.org/abstract/med/18764363

    [9] Yannopapas V, Paspalakis E, Vitanov N V. Electromagnetically induced transparency and slow light in an array of metallic nanoparticles[J]. Physical Review B, 80, 035104(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000020000002000047000001&idtype=cvips&gifs=Yes

    [10] Liu N, Langguth L, Weiss T et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 8, 758-762(2009). http://europepmc.org/abstract/MED/19578334

    [11] Li G S, Yan F P, Wang W et al. Analysis of multiband and broadband electromagnetically induced transparency based on three-dimensional coupling[J]. Laser & Optoelectronics Progress, 55, 123003(2018).

    [12] Ning R X, Bao J, Jiao Z. Wide band electromagnetically induced transparency in graphene metasurface of composite structure[J]. Acta Physica Sinica, 66, 100202(2017).

    [13] Kekatpure R D, Barnard E S, Cai W S et al. Phase-coupled plasmon-induced transparency[J]. Physical Review Letters, 104, 243902(2010). http://europepmc.org/abstract/MED/20867303

    [14] Yao Y, Kats M A, Shankar R et al. Wide wavelength tuning of optical antennas on graphene with nanosecond response time[J]. Nano Letters, 14, 214-219(2014). http://europepmc.org/abstract/med/24299012

    [15] Zhu Z H, Guo C C, Liu K et al. Electrically tunable polarizer based on anisotropic absorption of graphene ribbons[J]. Applied Physics A, 114, 1017-1021(2014). http://link.springer.com/article/10.1007/s00339-014-8269-7

    [16] Zhang Y, Feng Y J, Zhu B et al. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency[J]. Optics Express, 22, 22743-22752(2014). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-19-22743

    [17] Ding J, Arigong B, Ren H et al. Tunable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Scientific Reports, 4, 6128(2015). http://www.nature.com/srep/2014/140822/srep06128/fig_tab/srep06128_F4.html

    [18] Gao H, Yan F P, Tan S Y et al. Design of ultra-thin broadband terahertz metamaterial absorber based on patterned graphene[J]. Chinese Journal of Lasers, 44, 0703024(2017).

    [19] Fan T X, Zhang H F, Li Y et al. Tunable double plasmon-induced transparency windows in metamaterial formed by symmetric graphene and split ring resonators structure[J]. Acta Photonica Sinica, 46, 0816004(2017).

    [20] Gu J Q, Singh R, Liu X J et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 3, 1151(2012). http://www.ncbi.nlm.nih.gov/pubmed/23093188/

    [21] Shen N H, Massaouti M, Gokkavas M et al. Optically implemented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 106, 037403(2011). http://europepmc.org/abstract/med/21405297

    [22] Peng B, Özdemir Ş K, Chen W J et al. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities[J]. Nature Communications, 5, 5082(2014). http://europepmc.org/abstract/MED/25342088

    [23] Tan W, Sun Y, Wang Z G et al. Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings[J]. Applied Physics Letters, 104, 091107(2014). http://scitation.aip.org/content/aip/journal/apl/104/9/10.1063/1.4867505

    [24] Joannopoulos J D, Johnson S G, Winn J N et al[M]. Photonic Crystals: Molding the Flow of Light(2011).

    [25] Haus H A. Waves and fields in optoelectronics[M]. Englewood Cliffs, NJ: Prentice-Hall(1984).

    CLP Journals

    [1] Yunjia Zhang, Shaofei Wang, Gaochao Zhong, Sen Han, Pei Wang, Shan Yin. Metamaterial-Based Terahertz Multi-Band Sensors Integrated with Microfluidic Channels[J]. Chinese Journal of Lasers, 2019, 46(6): 0614038

    Yaru Wang, Lanju Liang, Maosheng Yang, Xujuan Wang, Yan Wang. Terahertz Metamaterial Based on Controllable Electromagnetic Induced Transparency Structure[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041603
    Download Citation