• Acta Optica Sinica
  • Vol. 35, Issue 9, 934001 (2015)
Liu Wenjie*, Ma Qingpeng, Fan Cheng, and Liu Jun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201535.0934001 Cite this Article Set citation alerts
    Liu Wenjie, Ma Qingpeng, Fan Cheng, Liu Jun. Design and Performance Testing of an Anti-Scattering Grid for Medium-Energy Flash Radiography[J]. Acta Optica Sinica, 2015, 35(9): 934001 Copy Citation Text show less
    References

    [1] Watson S A, Lebeda C, Tubb A. The design, manufacture and application of scatter reduction grids in megavolt radiography[R]. Los Alamos National Laboratory, 1999, LA-UR-99-1011.

    [2] Watson S A, Kauppila T, Morrison L, et al.. Pulsed high energy radiographic machine emitting X-rays (PHERMEX) flash radiographic camera[C]. SPIE, 1997, 2869: 920-928.

    [3] Watson S A. Contrast in radiography: The princess and the pea[R]. Los Alamos National Laboratory, 2005, LA-UR-05-0950.

    [4] Watson S A, Appleby M, Klinger J, et al.. Design, fabrication and testing of a large anti-scatter grid for megavolt γ-ray imaging[C]. IEEE Nuclear Science Symposium Conference Record, 2005, 2: 717-721.

    [5] Harsh J F, Hull L, Mendez J, et al.. Shot H3837: Darht's first dual-axis explosive experiment[C]. Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2012, 1426(1): 361-363.

    [6] Morris C L, Ables E, Alrick K R, et al.. Flash radiography with 24 GeV/c protons[J]. Journal of Applied Physics, 2011, 109(10): 104905.

    [7] Tang C M, Fischer E K, Guckel H. Anti-scattering X-ray grid[J]. Microsystem Technologies, 1998, 4(4): 187-192.

    [8] Fahrig R, Mainprize J G, Robert N, et al.. Performance of glass fiber antiscatter devices at mammographic energies[J]. Medical Physics, 1994, 21(8): 1277-1282.

    [9] Bucky G. An improved device for obtaining rontgen ray exposures[P]. US Patent 1164987, 1915.

    [10] Makarova O V, Yang G H, Amstutz P T, et al.. Fabrication of antiscatter grids and collimators for X-ray and gamma-ray imaging by lithography and electroforming[J]. Microsystem Technologies, 2008, 14(9-11): 1613-1619.

    [11] Kafi M A, Maalej N, Naqvi A A. Scatter dose calculation for anti-scatter linear grids in mammography[J]. Applied Radiation and Isotopes, 2009, 67(10): 1837-1841.

    [12] Tang C M, Makarova O V. Anti- scatter grid and collimator designs and their motion, fabrication and assembly[P]. US Patent 20030026386 AL, 2003: 6252938.

    [13] Tromans C E, Diffey J, Brady S M. Investigating the Replacement of the Physical Anti-Scatter Grid with Digital Image Processing[M]. Berlin: Springer Berlin Heidelberg, 2010: 205-212.

    [14] Coleman N J, Cowen A R, Parkin G J S. Effect on mammographic CR image quality of removing the anti-scatter grid[J]. Radiography, 2000, 6(3): 199-204.

    [15] Lehmann V, Ronnebeck S. MEMS techniques applied to the fabrication of anti-scatter grids for X-ray imaging[J]. Sensors and Actuators A: Physical, 2001, 95(2-3): 202-207.

    [16] Guckel H, Skrobis K J, Christenson T R, et al.. Micromechanics for actuators via deep X-ray lightgraphy[C]. SPIE, 1994, 2194: 2-10.

    [17] Guckel H, Skrobis K J, Klein J, et al.. Micromechanics via X-ray assisted processing[J]. Journal of Vacuum Science & Technology A, 1994, 12(4): 2559-2564.

    [18] Wang Shaogang, Wang Sucheng, Zhang Lei. Application of high resolution transmission X-ray tomography in material science[J]. Acta Metallurgica Sinica, 2013, 49(8): 897-910.

    [19] Ji Xing, Luo Xian, Yang Yanqing, et al.. Research progress of nondestructive testing for continuous fiber-reinforced metal-matrix composites[J]. Rare Metal Materials and Engineering, 2013, 42(S2): 401-405.

    [20] Shi Shaomeng, Chen Rongchang, Xue Yanling, et al.. X-ray microscopic imaging of low Z material wrapped by strongly absorbing medium [J]. Acta Physica Sinica, 2008, 57(10): 6319-6328.

    [21] Liu Lixiang, Du Guohao, Hu Wen, et al.. Application of quantitative imaging to elimination of scattering effect on X-ray in-line outline imaging[J]. Acta Physica Sinica, 2006, 55(12): 6387-6394.

    [22] Chen Yongtao, Tang Xiaojun, Li Qingzhong. Phase transition and influence of phase transition on spall in α phase Fe-based alloy[J]. Acta Physica Sinica, 2011, 60(4): 493-501.

    [23] Chen Yongtao, Ren Guowu, Tang Tiegang, et al.. Experimental diagnostic of melting fragments under explosive loading[J]. Acta Physica Sinica, 2013, 62(11): 393-398.

    [24] Liu Jun, Liu Jin, Guan Yonghong, et al.. Design of MeV anti-scatter grid in flash radiography[J]. High Power Laser and Paticle Beams, 2011, 23(8): 2047-2051.

    [25] Briesmeister J F. MCNP - a general Monte Carlo N-particle transport code, version 4B[R]. Los Alamos National Laboratory, 1997, LA-12625-M.

    [26] Liu Jun, Liu Jin, Shi Jiangjun. Monte-Carlo research of flash radiography about FTO at 3 m to the target[J]. High Power Laser and Paticle Beams, 2004, 16(9): 1210-1214.

    [27] Li Biyong, Shi Jiangjun, Liu Jin, et al.. Numerical simulation of distribution of scattered exposure and reduced scatter in flash radiographic system[J]. High Power Laser and Paticle Beams, 2005, 17(5): 788-792.

    [28] Jing Yuefeng, Liu Jun, Guan Yonghong. Inpainting method for flash radiographic anti-scatter grid image based on neural networks[J]. High Power Laser and Paticle Beams, 2013, 25(3): 751-754.

    Liu Wenjie, Ma Qingpeng, Fan Cheng, Liu Jun. Design and Performance Testing of an Anti-Scattering Grid for Medium-Energy Flash Radiography[J]. Acta Optica Sinica, 2015, 35(9): 934001
    Download Citation