• Opto-Electronic Engineering
  • Vol. 51, Issue 6, 240055-1 (2024)
Liguo Qu1,2,*, Xin Zhang1, Zibao Lu1, Yuling Liu1, and Guohao Chen3
Author Affiliations
  • 1School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241002, China
  • 2Anhui Provincial Engineering Research Center for Information Fusion and Control of Intelligent Robots, Wuhu, Anhui 241002, China
  • 3Wuhan Mingke Rail Transit Equipment Co., Ltd., Wuhan, Hubei 430074, China
  • show less
    DOI: 10.12086/oee.2024.240055 Cite this Article
    Liguo Qu, Xin Zhang, Zibao Lu, Yuling Liu, Guohao Chen. A traffic sign recognition method based on improved YOLOv5[J]. Opto-Electronic Engineering, 2024, 51(6): 240055-1 Copy Citation Text show less
    YOLOv5 network structure
    Fig. 1. YOLOv5 network structure
    Fog image
    Fig. 2. Fog image
    Structure diagram of C3 and PC3
    Fig. 3. Structure diagram of C3 and PC3
    Conv and PConv
    Fig. 4. Conv and PConv
    Distribution of label aspect ratio
    Fig. 5. Distribution of label aspect ratio
    YOLOv5 default path and EFPN path
    Fig. 6. YOLOv5 default path and EFPN path
    Removing the path EFPN' from the large object detection layer
    Fig. 7. Removing the path EFPN' from the large object detection layer
    CBAM attention mechanism
    Fig. 8. CBAM attention mechanism
    Improved network structure
    Fig. 9. Improved network structure
    Distribution of traffic signs after expansion
    Fig. 10. Distribution of traffic signs after expansion
    Comparison of accuracy effects of traffic signs before and after improvement
    Fig. 11. Comparison of accuracy effects of traffic signs before and after improvement
    Comparison of missed detection effects of traffic signs before and after improvement
    Fig. 12. Comparison of missed detection effects of traffic signs before and after improvement
    Comparison of false detection effects of traffic signs before and after improvement
    Fig. 13. Comparison of false detection effects of traffic signs before and after improvement
    改进方法精确率P/%Params/M
    pnw32ph4
    模型说明:YOLOv5+PC3+EFPN表示YOLOv5中C3中的普通卷积用轻量化部分卷积PConv替换,构成PC3替换掉原C3结构,检测头用EFPN替换;YOLOv5+PC3+EFPN'表示YOLOv5中C3中的普通卷积用轻量化部分卷积PConv替换,构成PC3替换掉原C3结构,检测头用EFPN'替换。
    YOLOv5+PC3+EFPN0.930.700.764.96
    YOLOv5+PC3+ EFPN '0.960.960.983.80
    Table 1. Comparison of EFPN and EFPN' structures
    检测尺度Anchor1Anchor2Anchor3
    小尺寸[10,13][16,30][33,23]
    中尺寸[30,61][62,45][59,119]
    大尺寸[116,90][156,198][373,326]
    Table 2. YOLOv5 default anchor box size
    检测尺度Anchor1Anchor2Anchor3
    小尺寸[5,5][6,7][8,9]
    中尺寸[9,14][9,14][14,15]
    大尺寸[19,20][19,20][25,26]
    Table 3. Results of K-means clustering algorithm
    编号模型PRmAP0.5FPSL/msParams/M
    模型说明:FOG代表扩充雾化数据集TT100K-FOG;PC3代表使用更加轻量的PConv构建PC3特征提取模块来取代YOLOv5骨干和颈部网络中的C3模块;EFPN代表采用延伸的特征金字塔结构,替代YOLOv5中检测头;EFPN'代表在EFPN结构中删除大目标检测层后,替代YOLOv5中检测头;Focal-EIoU代表采用Focal-EloU取代YOLOv5默认函数CIoU;CBAM代表在YOLOv5主干网络中嵌入空间和通道注意力模块。
    0YOLOv50.8420.8240.861145.76.97.10
    1YOLOv5+FOG0.8930.8380.870145.76.97.10
    2YOLOv5+FOG+PC30.8530.7680.840166.76.04.87
    3YOLOv5+FOG+PC3+EFPN0.8620.7590.842135.17.44.96
    4YOLOv5+FOG+PC3+EFPN'0.8760.7820.854161.36.23.80
    5YOLOv5+FOG+PC3+EFPN'+Focal-EIoU0.9060.7900.860161.36.23.80
    6YOLOv5+FOG+PC3+EFPN'+Focal-EIoU+CBAM0.9170.8530.899151.56.73.95
    Table 4. Results of ablation experiment
    模型平台主干网类型P/%mAP0.5 /%FPS
    Faster R-CNNMMDetectionResNet50Anchor-based71.979.957.7
    YOLOv4DarknetDarknetAnchor-based58.782.280.9
    YOLOv5YOLOv5DarknetAnchor-based84.286.1145.7
    YOLOXMMDetectionDarknetAnchor-free72.679.793.6
    YOLOv6YOLOv6EfficientRepAnchor-free77.781.1162.8
    YOLOv7YOLOv7E-ELANAnchor-based72.077.4130.2
    YOLOv8YOLOv8DarknetAnchor-free87.783.7171.4
    OursYOLOv5DarknetAnchor-based91.789.9151.5
    Table 5. Performance comparison with other algorithms
    Liguo Qu, Xin Zhang, Zibao Lu, Yuling Liu, Guohao Chen. A traffic sign recognition method based on improved YOLOv5[J]. Opto-Electronic Engineering, 2024, 51(6): 240055-1
    Download Citation