• Journal of Inorganic Materials
  • Vol. 36, Issue 3, 245 (2021)
Xiaoshan ZHANG1, Bing WANG1, Nan WU2, Cheng HAN1, Chunzhi WU1, and Yingde WANG1、*
Author Affiliations
  • 11. Science and Technology on Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • 22. Department of Material Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.15541/jim20200220 Cite this Article
    Xiaoshan ZHANG, Bing WANG, Nan WU, Cheng HAN, Chunzhi WU, Yingde WANG. Micro-nano Ceramic Fibers for High Temperature Thermal Insulation[J]. Journal of Inorganic Materials, 2021, 36(3): 245 Copy Citation Text show less
    References

    [1] F CHEN Y, Q HONG C, L HU C et al. Ceramic-based thermal protection materials for aerospace vehicle. Advanced Ceramics, 38, 311-390(2017).

    [2] B BEHRENS, M MULLER. Technologies for thermal protection systems applied on reusable launcher. Acta Astronautica, 55, 529-536(2004).

    [3] A WANG C, Y LANG, F HU L et al. Research progress on lightweight and high strength heat-insulating porous ceramics. Journal of Ceramics, 38, 287-296(2017).

    [4] L TERESA, T P A MARIA, D LUISA. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. Journal of Materials Chemistry A, 7, 22768-22802(2019).

    [5] Y LUO, G JIANG Y, Z FENG J et al. Progress on the preparation of SiO2 aerogel composites by ambient pressure drying technique. Materials Review, 32, 780-787(2018).

    [6] X XU, Q ZHANG, M HAO et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science, 363, 723-727(2019).

    [7] Y SI, X WANG, L DOU et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Science Advances, 4(2018).

    [8] L SU, H WANG, M NIU et al. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano, 12, 3103-3111(2018).

    [9] N SABETZADEH, H BAHRAMBEYGI, A RABBI et al. Thermal conductivity of polyacrylonitrile nanofibre web in various nanofibre diameters and surface densities. Micro & Nano Letters, 7, 662-666(2012).

    [10] J YAN, Y HAN, S XIA et al. Polymer template synthesis of flexible BaTiO3 Crystal nanofibers. Advanced Functional Materials, 29, 1907919(2019).

    [11] J YAN, Y ZHAO, X WANG et al. Polymer template synthesis of soft, light, and robust oxide ceramic films. iScience, 15, 185-195(2019).

    [12] R ARAMBAKAM, V TAFRESHI H, B POURDEYHIMI. A simple simulation method for designing fibrous insulation materials. Materials & Design, 44, 99-106(2013).

    [13] R ARAMBAKAM, V TAFRESHI H, B POURDEYHIMI. Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations. International Journal of Heat and Mass Transfer, 64, 1109-1117(2013).

    [14] S ZHANG X, B WANG, N WU et al. Flexible and thermal-stable SiZrOC nanofiber membranes with low thermal conductivity at high-temperature. Journal of the European Ceramic Society, 40, 1877-1885(2020).

    [15] K DARYABEUGI, R CUNNINGTON G, R KNUTSON J. Heat transfer modeling for rigid high-temperature fibrous insulation. Journal of Thermophysics and Heat Transfer, 27, 414-421(2013).

    [16] F HU, S WU, Y SUN. Hollow structured materials for thermal insulation. Advanced Materials, 31, 1801001(2019).

    [17] A MACHADO H. Modeling heat transfer with micro-scale natural convection in fibrous insulation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36, 847-857(2014).

    [18] K DARYABEUGI, R CUNNINGTON G, R KNUTSON J. Combined heat transfer in high-porosity high-temperature fibrous insulation: theory and experimental validation. Journal of Thermophysics and Heat Transfer, 25, 536-546(2011).

    [19] S SHIN, Q WANG, J LUO et al. Advanced materials for high- temperature thermal transport. Advanced Functional Materials, 30, 1904815(2020).

    [20] W GIBSON P, C LEE, F KO et al. Application of nanofiber technology to nonwoven thermal insulation. Journal of Engineered Fibers and Fabrics, 2, 32-40(2007).

    [21] B WANG, D WANG Y. Effect of fiber diameter on thermal conductivity of the electrospun carbon nanofiber mats. Advanced Materials Research, 332, 672-677(2011).

    [22] J YAN, Y ZHANG, Y ZHAO et al. Transformation of oxide ceramic textiles from insulation to conduction at room temperature, 6(2020).

    [23] W ZHU, A GUO, Y XUE et al. Mechanical evaluations of mullite fibrous ceramics processed by filtration and in situ pyrolysis of organic precursor. Journal of the European Ceramic Society, 39, 1329-1335(2019).

    [24] F HE, W LI, L ZKOU et al. Preparation and characterization of the three-dimensional network mullite porous fibrous materials by pressure and freeze-casting method. Ceramics International, 45, 3954-3960(2019).

    [25] J XUE, T WU, Y DAI et al. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chemical Reviews, 119, 5298-5415(2019).

    [26] N WU, B WANG, D WANG Y. Enhanced mechanical properties of amorphous SiOC nanofibrous membrane through in situ embedding nanoparticles. Journal of the American Ceramic Society, 101, 4763-4772(2018).

    [27] Y SI, X MAO, H ZHENG et al. Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Advances, 5, 6027-6032(2015).

    [28] X MAO, Y BAI, J YU et al. Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration. Journal of the American Ceramic Society, 99, 2760-2768(2016).

    [29] P ZHANG, D CHEN, X JIAO. Fabrication of flexible α-alumina fibers composed of nanosheets. European Journal of Inorganic Chemistry, 2012, 4167-4173(2012).

    [30] W LI, M ZHAO X, F WANG Y et al. Fabrication and mechanical properties of flexible gamma-Al2O3 nanofibrous membranes. Chemical Journal of Chinese Universities, 38, 915-921(2017).

    [31] K YUAN, X WANG, H LIU et al. Formation of barium zirconate fibers for high-temperature thermal insulation applications. Journal of the American Ceramic Society, 99, 2913-2919(2016).

    [32] S SHI, K YUAN, C XU et al. Electrospun fabrication, excellent high-temperature thermal insulation and alkali resistance performance of calcium zirconate fiber. Ceramics International, 44, 14013-14019(2018).

    [33] Y XIE, L WANG, B LIU et al. Flexible, controllable, and high-strength near-infrared reflective Y2O3 nanofiber membrane by electrospinning a polyacetylacetone-yttrium precursor. Materials & Design, 160, 918-925(2018).

    [34] Y SI, J YU, X TANG et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nature Communications, 5, 1-9(2014).

    [35] L DOU, X CHENG, X ZHANG et al. Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. Journal of Materials Chemistry A, 32, 1904331(2020).

    [36] L DOU, X ZHANG, X CHENG et al. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Applied Materials & Interfaces, 11, 29056-29064(2019).

    [37] F WANG, L DOU, J DAI et al. In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions. Angewandte Chemie International Edition, 59, 8285-8292(2020).

    [38] L XIAN, Y ZHANG, Y WU et al. Microstructural evolution of mullite nanofibrous aerogels with different ice crystal growth inhibitors. Ceramics International, 46, 1869-1875(2020).

    [39] L YU Z, B QIN, Y MA Z et al. Superelastic hard carbon nanofiber aerogels. Advanced Materials, 31, 1900651(2019).

    [40] C LI, W DING Y, C HU B et al. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels. Advanced Materials, 32, 1904331(2020).

    [41] J ZHANG, B LI, L LI et al. Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose. Journal of Materials Chemistry A, 4, 2069-2074(2016).

    [42] P RUCKDESCHEL, A PHILIPP, M RETSCH. Understanding thermal insulation in porous, particulate materials. Advanced Functional Materials, 27, 1702256(2017).

    [43] H BRENDEL, G SEIFERT, F RARTHER. Heat transfer properties of hollow-fiber insulation materials at high temperatures. Journal of Thermophysics and Heat Transfer, 31, 463-472(2017).

    [44] C WANG T, Z ZHANG, C DAI et al. Amorphous silicon and silicates-stabilized ZrO2 hollow fiber with low thermal conductivity and high phase stability derived from a cogon template. Ceramics International, 45, 7120-7126(2019).

    [45] C WANG T, S KONG, L CHANG et al. Preparation and heat-insulating property of the bio-inspired ZrO2 fibers based on the silk template. Ceramics International, 38, 6783-6788(2012).

    [46] C WANG T, Q YU, J KONG et al. Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template. Ceramics International, 43, 9296-9302(2017).

    [47] C WANG T, Q YU, J KONG. Preparation and heat-insulating properties of biomorphic ZrO2 hollow fibers derived from a cotton template. International Journal of Applied Ceramic Technology, 15, 472-478(2018).

    [48] C XU, H WANG, J SONG et al. Ultralight and resilient Al2O3 nanotube aerogels with low thermal conductivity. Journal of the American Ceramic Society, 101, 1677-1683(2018).

    [49] J ZHAN H, J WU K, L HU Y et al. Biomimetic carbon tube aerogel enables super-elasticity and thermal insulation. Chem, 5, 1871-1882(2019).

    [50] A DU, H WANG, B ZHOU et al. Multifunctional silica nanotube aerogels inspired by polar bear hair for light management and thermal insulation. Chemistry of Materials, 30, 6849-6857(2018).

    [51] Y LIU, Y LIU, C CHOI W et al. Highly flexible, erosion resistant and nitrogen doped hollow SiC fibrous mats for high temperature thermal insulators. Journal of Materials Chemistry A, 5, 2664-2672(2017).

    [52] Q TIAN, N WU, B WANG et al. Fabrication of hollow SiC ultrafine fibers by single-nozzle electrospinning for high-temperature thermal insulation application. Materials Letters, 239, 109-112(2019).

    [53] S GBEWONYO, W CARPENTER A, B GAUSE C et al. Low thermal conductivity carbon fibrous composite nanomaterial enabled by multi-scale porous structure. Materials & Design, 134, 218-225(2017).

    [54] D WANG Y, H HUANG, Y ZHAO et al. Self-assembly of ultralight and compressible inorganic sponges with hierarchical porosity by electrospinning. Ceramics International, 46, 768-774(2020).

    [55] Z LIU, J LYU, D FANG et al. Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano, 13, 5703-5711(2019).

    [56] J ZHOU, L HSIEH Y. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy, 68, 104305(2020).

    [57] H YANG, Z WANG, Z LIU et al. Continuous, strong, porous silk firoin-based aerogel fibers toward textile thermal insulation. Polymers, 11, 1899(2019).

    [58] J YANG, H WU, M WANG et al. Prediction and optimization of radiative thermal properties of ultrafine fibrous insulations. Applied Thermal Engineering, 104, 394-402(2016).

    [59] L YANG L, D GE, H WEI et al. Morphology and characterization of ITO-Ag-ITO films on fibers by layer-by-layer method. Applied Surface Science, 255, 8197-8201(2009).

    [60] D WANG X, D SUN, Y DUAN Y et al. Radiative characteristics of opacifier-loaded silica aerogel composites. Journal of Non-crystalline Solids, 375, 31-39(2013).

    [61] C LEE S, R CUNNINGTON G. Conduction and radiation heat transfer in high-porosity fiber thermal insulation. Journal of Thermophysics and Heat Transfer, 14, 121-136(2000).

    [62] W TONG T, S SWATHI P, JR G R CUNNINGTON. Examination of the radiative properties of coated silica fibers. Journal of Thermal Insulation, 11, 7-31(1987).

    [63] W TONG T, S SWATHI P, JR G R CUNNINGTON. Reduction of radiative heat transfer in thermal insulations by use of dielectric coated fibers. International Communications in Heat and Mass Transfer, 16, 851-860(1989).

    [64] D HASS D, D PRASDA B, E GLASS D et al. Reflective Coating on Fibrous Insulation for Reduced Heat Transfer. NASA Contractor Report 201733(1997).

    [65] L YANG L, X HE, F HE. ITO coated quartz fibers for heat radiative applications. Materials Letters, 62, 4539-4541(2008).

    [66] X GAN, Z YU, K YUAN et al. Preparation of a CeO2-nanoparticle thermal radiation shield coating on ZrO2 fibers via a hydrothermal method. Ceramics International, 43, 14183-14191(2017).

    [67] J YANG, Y ZHANG, Z HONG et al. Preparations of TiO2 nanocrystal coating layers with various morphologies on mullite fibers for infrared opacifier application. Thin Solid Films, 520, 2651-2655(2012).

    [68] D MA, L ZHU, B LIU. Hydrothermally grown uniform TiO2 coatings on ZrO2 fibers and their infrared reflective and thermal conductive properties. Ceramics International, 46, 3400-3405(2020).

    [69] L XU, Y JIANG, J FENG et al. Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceramics International, 41, 437-442(2015).

    [70] D WANG Y, C HAN, D ZHENG et al. Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition. Journal of Materials Chemistry A, 2, 9607-9612(2014).

    Xiaoshan ZHANG, Bing WANG, Nan WU, Cheng HAN, Chunzhi WU, Yingde WANG. Micro-nano Ceramic Fibers for High Temperature Thermal Insulation[J]. Journal of Inorganic Materials, 2021, 36(3): 245
    Download Citation