• Laser & Optoelectronics Progress
  • Vol. 57, Issue 17, 170005 (2020)
Zhi Li1, Weina Qian3, Simin Wei2, Hao Yan1, Ruyi Jin1, and Hui Guo1、2、*
Author Affiliations
  • 1Basic Chemistry Staff Room, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China
  • 2Collaborative Innovation Center of Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China
  • 3Department of Oncology, the Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, China
  • show less
    DOI: 10.3788/LOP57.170005 Cite this Article Set citation alerts
    Zhi Li, Weina Qian, Simin Wei, Hao Yan, Ruyi Jin, Hui Guo. Application of Photothermal Conversion Nanomaterials in Tumor Photothermal Therapy[J]. Laser & Optoelectronics Progress, 2020, 57(17): 170005 Copy Citation Text show less
    References

    [1] Word Healthy Organization[2020-02-20]. Cancer [2020-02-20].http:∥www.who.int/mediacentre/factsheets/fs297/en/..

    [2] Goldman L. Laser cancer research[M]. Berlin: Springer(1966).

    [3] Liu Y J, Bhattarai P, Dai Z F et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chemical Society Reviews, 48, 2053-2108(2019).

    [4] Shi J J, Kantoff P W, Wooster R et al. Cancer nanomedicine: progress, challenges and opportunities[J]. Nature Reviews Cancer, 17, 20-37(2017).

    [5] Cai Y, Wei Z, Song C H et al. Optical nano-agents in the second near-infrared window for biomedical applications[J]. Chemical Society Reviews, 48, 22-37(2019).

    [6] Ge X G, Fu Q R, Bai L et al. Photoacoustic imaging and photothermal therapy in the second near-infrared window[J]. New Journal of Chemistry, 43, 8835-8851(2019).

    [7] Gai S L, Yang G X, Yang P P et al. Recent advances in functional nanomaterials for light-triggered cancer therapy[J]. Nano Today, 19, 146-187(2018).

    [8] Abadeer N S, Murphy C J. Recent progress in cancer thermal therapy using gold nanoparticles[J]. The Journal of Physical Chemistry C, 120, 4691-4716(2016).

    [9] Dong L Y, Li Y C, Li Z et al. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors[J]. ACS Applied Materials & Interfaces, 10, 9247-9256(2018).

    [10] Hou G H, Qian J M, Xu W J et al. A novel pH-sensitive targeting polysaccharide-gold nanorod conjugate for combined photothermal-chemotherapy of breast cancer[J]. Carbohydrate Polymers, 212, 334-344(2019).

    [11] Zhang Y Y, Li J C, Jiang H et al. Rapid tumor bioimaging and photothermal treatment based on GSH-capped red fluorescent gold nanoclusters[J]. RSC Advances, 6, 63331-63337(2016).

    [12] Bian K X, Zhang X W, Yang M X et al. Dual-template cascade synthesis of highly multi-branched Au nanoshells with ultrastrong NIR absorption and efficient photothermal therapeutic intervention[J]. Journal of Materials Chemistry B, 7, 598-610(2019).

    [13] Liu Y J, Wang Z T, Liu Y et al. Suppressing nanoparticle-mononuclear phagocyte system interactions of two-dimensional gold nanorings for improved tumor accumulation and photothermal ablation of tumors[J]. ACS Nano, 11, 10539-10548(2017).

    [14] Yin T, Li Y J, Bian K X et al. Self-assembly synthesis of vapreotide-gold hybrid nanoflower for photothermal antitumor activity[J]. Materials Science and Engineering C, 93, 716-723(2018).

    [15] González-Rubio G, Díaz-Núnez P, Rivera A et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances[J]. Science, 358, 640-644(2017).

    [16] Huang X Q, Tang S H, Mu X L et al. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nature Nanotechnology, 6, 28-32(2011).

    [17] Tang S H, Chen M, Zheng N F. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy[J]. Small, 10, 3139-3144(2014).

    [18] Zhu X M, Wan H Y, Jia H L et al. Porous Pt nanoparticles with high near-infrared photothermal conversion efficiencies for photothermal therapy[J]. Advanced Healthcare Materials, 5, 3165-3172(2016).

    [19] Dumas A, Couvreur P. Palladium: a future key player in the nanomedical field?[J]. Chemical Science, 6, 2153-2157(2015).

    [20] Augustine S, Singh J, Srivastava M et al. Recent advances in carbon based nanosystems for cancer theranostics[J]. Biomaterials Science, 5, 901-952(2017).

    [21] Tan C L, Cao X H, Wu X J et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 117, 6225-6331(2017).

    [22] Gu Z J, Zhu S, Yan L et al. Graphene-based smart platforms for combined cancer therapy[J]. Advanced Materials, 31, 1800662(2019).

    [23] Sinha M, Gollavelli G, Ling Y. Exploring the photothermal hot spots of graphene in the first and second biological window to inactivate cancer cells and pathogens[J]. RSC Advances, 6, 63859-63866(2016).

    [24] Sobhani Z, Behnam M A, Emami F et al. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes[J]. International Journal of Nanomedicine, 12, 4509-4517(2017).

    [25] Xu Y H, Shan Y L, Cong H L et al. Advanced carbon-based nanoplatforms combining drug delivery and thermal therapy for cancer treatment[J]. Current Pharmaceutical Design, 24, 4060-4076(2019).

    [26] Zhao W, Li A H, Zhang A T et al. Recent advances in functional-polymer-decorated transition-metal nanomaterials for bioimaging and cancer therapy[J]. ChemMedChem, 13, 2134-2149(2018).

    [27] Chen Y, Wang L Z, Shi J L. Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy[J]. Nano Today, 11, 292-308(2016).

    [28] Gong L J, Yan L, Zhou R Y et al. Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy[J]. Journal of Materials Chemistry B, 5, 1873-1895(2017).

    [29] Yan C L, Tian Q W, Yang S P. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells[J]. RSC Advances, 7, 37887-37897(2017).

    [30] Zhang S H, Sun C X, Zeng J F et al. Ambient aqueous synthesis of ultrasmall PEGylated Cu2-x Se nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer[J]. Advanced Materials, 28, 8927-8936(2016).

    [31] Zhou M, Zhang R, Huang M et al. A chelator-free multifunctional [ 64Cu]-CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy[J]. Journal of the American Chemical Society, 132, 15351-15358(2010).

    [32] Ding X G, Fu D D, Kuang Y et al. Seeded growth of Cu2-xSe nanocrystals and their size-dependent phototherapeutic effect[J]. ACS Applied Nano Materials, 1, 3303-3311(2018).

    [33] Ariyasu S, Mu J, Zhang X et al. Investigation of thermally induced cellular ablation and heat response triggered by planar MoS2-based nanocomposite[J]. Bioconjugate Chemistry, 28, 1059-1067(2017).

    [34] Zhang X Y, Wu J R, Williams G R et al. Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy[J]. Journal of Colloid and Interface Science, 539, 433-441(2019).

    [35] Liu T, Liu Z. 2D MoS2 nanostructures for biomedical applications[J]. Advanced Healthcare Materials, 7, e1701158(2018).

    [36] Wang S G, Li K, Chen Y et al. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor[J]. Biomaterials, 39, 206-217(2015).

    [37] Liu T, Shi S X, Liang C et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radio labeling and multimodal imaging guided photothermal therapy[J]. ACS Nano, 9, 950-960(2015).

    [38] Liu T, Chao Y, Gao M et al. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy[J]. Nano Research, 9, 3003-3017(2016).

    [39] Yang H L, Zhao J L, Wu C Y et al. Facile synthesis of colloidal stable MoS2 nanoparticles for combined tumor therapy[J]. Chemical Engineering Journal, 351, 548-558(2018).

    [40] Naguib M, Kurtoglu M, Presser V et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 23, 4248-4253(2011).

    [41] Lin H, Wang X G, Yu L D et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 17, 384-391(2017).

    [42] Yu X H, Cai X K, Cui H D et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy[J]. Nanoscale, 9, 17859-17864(2017).

    [43] Xuan J N, Wang Z Q, Chen Y Y et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie, 128, 14789-14794(2016).

    [44] Lin H, Wang Y W, Gao S S et al. Theranostic 2D tantalum carbide (MXene)[J]. Advanced Materials, 30, 1703284(2018).

    [45] Lin H, Gao S S, Dai C et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows[J]. Journal of the American Chemical Society, 139, 16235-16247(2017).

    [46] Yang X Y, Liu G Y, Shi Y H et al. Nano-black phosphorus for combined cancer phototherapy: recent advances and prospects[J]. Nanotechnology, 29, 222001(2018).

    [47] Choi J R, Yong K W, Choi J Y et al. Black phosphorus and its biomedical applications[J]. Theranostics, 8, 1005-1026(2018).

    [48] Qian X Q, Gu Z, Chen Y. Two-dimensional black phosphorus nanosheets for theranostic nanomedicine[J]. Materials Horizons, 4, 800-816(2017).

    [49] Yang X Y, Wang D Y, Shi Y H et al. Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy[J]. ACS Applied Materials & Interfaces, 10, 12431-12440(2018).

    [50] Zeng X W, Luo M M, Liu G et al. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments[J]. Advanced Science, 5, 1800510(2018).

    [51] Cheng H B, Cui Y X, Wang R et al. The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy[J]. Coordination Chemistry Reviews, 392, 237-254(2019).

    [52] Jung H S, Verwilst P, Sharma A et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe[J]. Chemical Society Reviews, 47, 2280-2297(2018).

    [53] Chen R, Wang J J, Qiao H Z et al. Organic photothermal conversion materials and their application in photothermal therapy[J]. Progress in Chemistry, 29, 329-336(2017).

    [54] Han Y H, Kankala R K, Wang S B et al. Leveraging engineering of indocyanine green-encapsulated polymeric nanocomposites for biomedical applications[J]. Nanomaterials, 8, 360(2018).

    [55] Bhattarai P, Dai Z F. Cyanine based nanoprobes for cancer theranostics[J]. Advanced Healthcare Materials, 6, 1700262(2017).

    [56] Sheng Z H, Hu D H, Xue M M et al. Indocyanine green nanoparticles for theranostic applications[J]. Nano-Micro Letters, 5, 145-150(2013).

    [57] Yoon H J, Lee H S, Lim J Y et al. Liposomal indocyanine green for enhanced photothermal therapy[J]. ACS Applied Materials & Interfaces, 9, 5683-5691(2017).

    [58] Pan G Y, Jia H R, Zhu Y X et al. Turning double hydrophilic into amphiphilic: IR825-conjugated polymeric nanomicelles for near-infrared fluorescence imaging-guided photothermal cancer therapy[J]. Nanoscale, 10, 2115-2127(2018).

    [59] Luo H H, Wang Q L, Deng Y B et al. Mutually synergistic nanoparticles for effective thermo-molecularly targeted therapy[J]. Advanced Functional Materials, 27, 1702834(2017).

    [60] Zhou Y M, Liang X L, Dai Z F. Porphyrin-loaded nanoparticles for cancer theranostics[J]. Nanoscale, 8, 12394-12405(2016).

    [61] Zhao L Y, Liu Y M, Chang R et al. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy[J]. Advanced Functional Materials, 29, 1806877(2019).

    [62] Lovell J F, Jin C S, Huynh E et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nature Materials, 10, 324-332(2011).

    [63] MacLaughlin C M, Ding L L, Jin C et al. Porphysome nanoparticles for enhanced photothermal therapy in a patient-derived orthotopic pancreas xenograft cancer model: a pilot study[J]. Journal of Biomedical Optics, 21, 84002(2016).

    [64] Li X S, Kim C, Lee S A et al. Nanostructured phthalocyanine assemblies with protein-driven switchable photoactivities for biophotonic imaging and therapy[J]. Journal of the American Chemical Society, 139, 10880-10886(2017).

    [65] He H, Ji S S, He Y et al. Photoconversion-tunable fluorophore vesicles for wavelength-dependent photoinduced cancer therapy[J]. Advanced Materials, 29, 1606690(2017).

    [66] Chen Q, Liu X D, Zeng J F et al. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors[J]. Biomaterials, 98, 23-30(2016).

    [67] Vines J B, Lim D, Park H. Contemporary polymer-based nanoparticle systems for photothermal therapy[J]. Polymers, 10, 1357(2018).

    [68] Jiang Y Y, Pu K Y. Multimodal biophotonics of semiconducting polymer nanoparticles[J]. Accounts of Chemical Research, 51, 1840-1849(2018).

    [69] Yang J, Choi J, Bang D et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Angewandte Chemie International Edition, 50, 441-444(2011).

    [70] Wang J P, Guo F, Yu M et al. Rapamycin/DiR loaded lipid-polyaniline nanoparticles for dual-modal imaging guided enhanced photothermal and antiangiogenic combination therapy[J]. Journal of Controlled Release, 237, 23-34(2016).

    [71] Cheng L, Yang K, Chen Q et al. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer[J]. ACS Nano, 6, 5605-5613(2012).

    [72] Yang K, Xu H, Cheng L et al. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles[J]. Advanced Materials, 24, 5586-5592(2012).

    [73] Wang Z, Duan Y O, Duan Y W. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior[J]. Journal of Controlled Release, 290, 56-74(2018).

    [74] Cai Y, Liang P P, Tang Q Y et al. Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy[J]. ACS Nano, 11, 1054-1063(2017).

    [75] Lyu Y, Zeng J F, Jiang Y Y et al. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy[J]. ACS Nano, 12, 1801-1810(2018).

    [76] Wilhelm S, Tavares A J, Dai Q et al. Analysis of nanoparticle delivery to tumours[J]. Nature Reviews Materials, 1, 16014(2016).

    [77] Vankayala R, Hwang K C. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment[J]. Advanced Materials, 30, 1706320(2018).

    [78] Walkey C D, Olsen J B, Guo H B et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake[J]. Journal of the American Chemical Society, 134, 2139-2147(2012).

    [79] Hou J, Du Y, Zhang T et al. PEGylated (NH4)xWO3 nanorod mediated rapid photonecrosis of breast cancer cells[J]. Nanoscale, 11, 10209-10219(2019).

    [80] Xie W S, Gao Q, Wang D et al. Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer[J]. Nano Research, 11, 2470-2487(2018).

    [81] Chen D P, Tang Q Y, Zou J H et al. pH-responsive PEG-doxorubicin-encapsulated aza-BODIPY nanotheranostic agent for imaging-guided synergistic cancer therapy[J]. Advanced Healthcare Materials, 7, 1701272(2018).

    [82] Khunsuk P O, Chawalitpong S, Sawutdeechaikul P et al. Gold nanorods stabilized by biocompatible and multifunctional zwitterionic copolymer for synergistic cancer therapy[J]. Molecular Pharmaceutics, 15, 164-174(2018).

    [83] Jiang H Y, Chen D, Guo D B et al. Zwitterionic gold nanorods: low toxicity and high photothermal efficacy for cancer therapy[J]. Biomaterials Science, 5, 686-697(2017).

    [84] Deng W X, Wu Q, Sun P F et al. Zwitterionic diketopyrrolopyrrole for fluorescence/photoacoustic imaging guided photodynamic/photothermal therapy[J]. Polymer Chemistry, 9, 2805-2812(2018).

    [85] Blanco E, Shen H F, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nature Biotechnology, 33, 941-951(2015).

    [86] Ban Q F, Bai T, Duan X et al. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers[J]. Biomaterials Science, 5, 190-210(2017).

    [87] Hu C M J, Zhang L, Aryal S et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J]. PNAS, 108, 10980-10985(2011).

    [88] Hu C J, Fang R H, Wang K et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 526, 118-121(2015).

    [89] Zhang N, Li M H, Sun X T et al. NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery[J]. Biomaterials, 159, 25-36(2018).

    [90] Meng Q F, Rao L, Zan M H et al. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy[J]. Nanotechnology, 29, 134004(2018).

    [91] Zhu D M, Xie W, Xiao Y S et al. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy[J]. Nanotechnology, 29, 084002(2018).

    [92] Zhen X, Cheng P H, Pu K Y. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy[J]. Small, 15, 1804105(2019).

    [93] Pan L M, Liu J N, Shi J L. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics[J]. Chemical Society Reviews, 47, 6930-6946(2018).

    [94] Ma Z Y, Han K, Dai X X et al. Precisely striking tumors without adjacent normal tissue damage via mitochondria-templated accumulation[J]. ACS Nano, 12, 6252-6262(2018).

    [95] Karimi M, Ghasemi A, Sahandi Zangabad P et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems[J]. Chemical Society Reviews, 45, 1457-1501(2016).

    [96] Ju E G, Dong K, Liu Z et al. Tumor microenvironment activated photothermal strategy for precisely controlled ablation of solid tumors upon NIR irradiation[J]. Advanced Functional Materials, 25, 1574-1580(2015).

    [97] Xue F F, Wen Y, Wei P et al. A smart drug: a pH-responsive photothermal ablation agent for Golgi apparatus activated cancer therapy[J]. Chemical Communications, 53, 6424-6427(2017).

    [98] Tang Q Y, Xiao W Y, Huang C H et al. pH-triggered and enhanced simultaneous photodynamic and photothermal therapy guided by photoacoustic and photothermal imaging[J]. Chemistry of Materials, 29, 5216-5224(2017).

    [99] Ni D L, Jiang D W, Valdovinos H F et al. Bioresponsive polyoxometalate cluster for redox-activated photoacoustic imaging-guided photothermal cancer therapy[J]. Nano Letters, 17, 3282-3289(2017).

    [100] Gong F, Cheng L, Yang N L et al. Bimetallic oxide MnMoOx nanorods for in vivo photoacoustic imaging of GSH and tumor-specific photothermal therapy[J]. Nano Letters, 18, 6037-6044(2018).

    [101] Gao H B, Fang X M, Xiang J et al. Development of tungsten bronze nanorods for redox-enhanced photoacoustic imaging-guided photothermal therapy of tumors[J]. RSC Advances, 8, 26713-26719(2018).

    [102] Chen Q, Liang C, Sun X Q et al. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay[J]. PNAS, 114, 5343-5348(2017).

    [103] Zhen X, Zhang J J, Huang J G et al. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy[J]. Angewandte Chemie International Edition, 57, 7804-7808(2018).

    [104] Zhou J J, Jiang Y Y, Hou S et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window[J]. ACS Nano, 12, 2643-2651(2018).

    [105] Han X X, Huang J, Jing X X et al. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow[J]. ACS Nano, 12, 4545-4555(2018).

    [106] Guo B, Sheng Z H, Hu D H et al. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance[J]. Advanced Materials, 30, 1802591(2018).

    [107] Jiang Y Y, Li J C, Zhen X et al. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study[J]. Advanced Materials, 30, 1705980(2018).

    [108] de Melo-Diogo D, Pais-Silva C, Dias D R et al. Strategies to improve cancer photothermal therapy mediated by nanomaterials[J]. Advanced Healthcare Materials, 6, 1700073(2017).

    [109] Xu W J, Meng Z Q, Yu N et al. PEGylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells[J]. RSC Advances, 5, 7074-7082(2015).

    [110] Sharker S M, Kim S M, Lee J E et al. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy[J]. Journal of Controlled Release, 217, 211-220(2015).

    [111] Zhang B, Wang H F, Shen S et al. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor[J]. Biomaterials, 79, 46-55(2016).

    Zhi Li, Weina Qian, Simin Wei, Hao Yan, Ruyi Jin, Hui Guo. Application of Photothermal Conversion Nanomaterials in Tumor Photothermal Therapy[J]. Laser & Optoelectronics Progress, 2020, 57(17): 170005
    Download Citation