• Advanced Photonics Nexus
  • Vol. 3, Issue 5, 056004 (2024)
Yaoran Zhang1,†, Hao Hu1, Francisco José García-Vidal2, Jingjing Zhang3..., Liangliang Liu1,*, Yu Luo1,4,* and Zhuo Li1,*|Show fewer author(s)
Author Affiliations
  • 1Nanjing University of Aeronautics and Astronautics, College of Electronic and Information Engineering, National Key Laboratory of Microwave Photonics, Nanjing, China
  • 2Universidad Autónoma de Madrid, Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center, Madrid, Spain
  • 3Southeast University, State Key Laboratory of Millimeter Waves, Nanjing, China
  • 4Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
  • show less
    DOI: 10.1117/1.APN.3.5.056004 Cite this Article Set citation alerts
    Yaoran Zhang, Hao Hu, Francisco José García-Vidal, Jingjing Zhang, Liangliang Liu, Yu Luo, Zhuo Li, "Reconfigurable exceptional point-based sensing with 0.001λ sensitivity using spoof localized surface plasmons," Adv. Photon. Nexus 3, 056004 (2024) Copy Citation Text show less
    References

    [1] C. Dembowski et al. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 86, 787-790(2001).

    [2] B. Peng et al. Loss-induced suppression and revival of lasing. Science, 346, 328-332(2014).

    [3] T. Gao et al. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 526, 554-558(2015).

    [4] D. Liu et al. Simultaneous manipulation of line‐gap and point‐gap topologies in non‐Hermitian lattices. Laser Photonics Rev., 17, 2200371(2023).

    [5] S. Malzard, C. Poli, H. Schomerus. Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity-time symmetry. Phys. Rev. Lett., 115, 200402(2015).

    [6] J. Doppler et al. Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 537, 76-79(2016).

    [7] Y. D. Chong, G. Li, A. D. Stone. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett., 106, 093902(2011).

    [8] C. Wang et al. Coherent perfect absorption at an exceptional point. Science, 373, 1261-1265(2021).

    [9] M. P. Hokmabadi et al. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature, 576, 70-74(2019).

    [10] Y. Choi et al. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nat. Commun., 8, 14154(2017).

    [11] B. Peng et al. Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. U. S. A., 113, 6845-6850(2016).

    [12] H. Zhao et al. Non-Hermitian topological light steering. Science, 365, 1163-1166(2019).

    [13] A. Li et al. Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol., 18, 706-720(2023).

    [14] A. Schumer et al. Topological modes in a laser cavity through exceptional state transfer. Science, 375, 884-888(2022).

    [15] M.-A. Miri, A. Alù. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [16] J. Wiersig. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A, 84, 063828(2011).

    [17] L. Shao et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 25, 5616-5620(2013).

    [18] W. Chen et al. Parity-time-symmetric whispering-gallery mode nanoparticle sensor. Photonics Res., 6, A23-A30(2018).

    [19] G.-Q. Qin et al. Experimental realization of sensitivity enhancement and suppression with exceptional surfaces. Laser Photonics Rev., 15, 2000569(2021).

    [20] J. Zhu et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon., 4, 46-49(2009).

    [21] D. Liu, H. Hu, J. Zhang. Edge states in coupled non-Hermitian resonators. Opt. Lett., 48, 2869-2872(2023).

    [22] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [23] J. Wiersig. Sensors operating at exceptional points: general theory. Phys. Rev. A, 93, 033809(2016).

    [24] W. Chen et al. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [25] B. Arash, J. W. Jiang, T. Rabczuk. A review on nanomechanical resonators and their applications in sensors and molecular transportation. Appl. Phys. Rev., 2, 021301(2015).

    [26] X. Zhang et al. Spoof localized surface plasmons for sensing applications. Adv. Mater. Technol., 6, 2000863(2021).

    [27] J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [28] Z. Li et al. Mimicking localized surface plasmons with structural dispersion. Adv. Opt. Mater., 7, 1900118(2019).

    [29] Z. Li et al. Multi-band localized spoof plasmons with texturing closed surfaces. Appl. Phys. Lett., 104, 101603(2014).

    [30] Z. Gao et al. Localized spoof surface plasmons in textured open metal surfaces. Opt. Lett., 41, 2181-2184(2016).

    [31] F. J. García-Vidal et al. Spoof surface plasmon photonics. Rev. Mod. Phys., 94, 025004(2022).

    [32] A. Pors et al. Localized spoof plasmons arise while texturing closed surfaces. Phys. Rev. Lett., 108, 223905(2012).

    [33] X. Shen, T. J. Cui. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser Photonics Rev., 8, 137-145(2014).

    [34] X. Zhang, T. J. Cui. Deep-subwavelength and high-Q trapped mode induced by symmetry-broken in toroidal plasmonic resonator. IEEE Trans. Antennas Propag., 69, 2122-2129(2021).

    [35] X. Zhang et al. Wide-bandpass filtering due to multipole resonances of spoof localized surface plasmons. Ann. Phys., 530, 1800207(2018).

    [36] Z. Liao et al. High-order localized spoof surface plasmon resonances and experimental verifications. Sci. Rep., 5, 9590(2015).

    [37] Q. Zhou et al. Plasmonic bound states in the continuum in compact nanostructures. Adv. Opt. Mater., 10, 2201590(2022).

    [38] H. Y. Jeong et al. Electrical addressing of exceptional points in compact plasmonic structures. Nanophotonics, 12, 2029-2039(2023).

    [39] T. S. Bai et al. Exceptional point in a microwave plasmonic dipole resonator for sub-microliter solution sensing. Adv. Funct. Mater., 34, 2312170(2024).

    [40] Z. Liao et al. Microwave plasmonic exceptional points for enhanced sensing. Laser Photonics Rev., 17, 2300276(2023).

    [41] J. Chen et al. Coherent-resonance enhancement of sensing at the exceptional points. Adv. Opt. Mater., 12, 2302268(2024).

    [42] Y. Jin et al. Intelligent on-demand design of phononic metamaterials. Nanophotonics, 11, 439-460(2022).

    Yaoran Zhang, Hao Hu, Francisco José García-Vidal, Jingjing Zhang, Liangliang Liu, Yu Luo, Zhuo Li, "Reconfigurable exceptional point-based sensing with 0.001λ sensitivity using spoof localized surface plasmons," Adv. Photon. Nexus 3, 056004 (2024)
    Download Citation