• Opto-Electronic Engineering
  • Vol. 45, Issue 3, 170698 (2018)
Wang Weimin1、2、* and Wang Qiang1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2018.170698 Cite this Article
    Wang Weimin, Wang Qiang. Development and characterization of a 140-element MEMS deformable mirror[J]. Opto-Electronic Engineering, 2018, 45(3): 170698 Copy Citation Text show less
    References

    [1] Jiang W H, Zhang Y D, Rao C H, et al. Progress on adaptive optics of institute of optics and electronics, Chinese academy of sciences[J]. Acta Optica Sinica, 2011, 31(9): 0900106.

    [2] Morzinski K M, Norton A P, Evans J W, et al. MEMS practice: from the lab to the telescope[J]. Proceedings of SPIE, 2012, 8253: 825304.

    [3] Manzanera S, Helmbrecht M A, Kempf C J, et al. MEMS segmented- based adaptive optics scanning laser ophthalmoscope[ J]. Biomedical Optics Express, 2011, 2(5): 1204–1217.

    [4] Cornelissen S A, Bierden P A, Bifano T G, et al. 4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2009, 8(3): 031308.

    [5] Helmbrecht M A, He M, Kempf C J. Development of high-order segmented MEMS deformable mirrors[J]. Proceedings of SPIE, 2012, 8253: 825307.

    [6] Vdovin G, Soloviev O, Samokhin A, et al. Correction of low order aberrations using continuous deformable mirrors[J]. Optics Express, 2008, 16(5): 2859–2866.

    [7] Dagel D J, Cowan W D, Spahn O B, et al. Large-stroke MEMS deformable mirrors for adaptive optics[J]. Journal of Microelectromechanical Systems, 2006, 15(3): 572–583.

    [8] Fernández B R, Bouchti M A, Kubby J. High-stroke, high-order MEMS deformable mirrors[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2013, 12(3): 033012.

    [9] Jung I W, Peter Y A, Carr E, et al. Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(2): 162–167.

    [10] Yu H B, Chen H Q. Development of a novel micromirror based on surface micromaching technology[J]. Sensors and Actuators A: Physical, 2006, 125(2): 458–462.

    [11] Qiao D Y, Wang S J, Yuan W Z. A continuous-membrane micro deformable mirror based on anodic bonding of SOI to glass wafer[J]. Microsystem Technologies, 2010, 16(10): 1765–1769.

    [12] Qiao D Y, Liu Y B, Wang S J, et al. Segmented micro deformable mirrors based on MEMS technology[J]. Aviation Precision Manufacturing Technology, 2010, 46(4): 6–12.

    [13] Sun Q, He K, Cretu E. Optimization designed large-stroke MEMS micromirror for adaptive optics[J]. Chinese Optics Letters, 2010, 8(12): 1163–1166.

    [14] Chen D S, Yeh P F, Chen Y F, et al. An electrothermal actuator with two degrees of freedom serving as the arm of a MEMS gripper[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5465–5471.

    [15] Ma J Q, Liu Y, Chen C P, et al. Deformable mirrors based on piezoelectric unimorph microactuator array for adaptive optics correction[J]. Optics Communications, 2011, 284(21): 5062–5066.

    [16] Zhang W M, Yan H, Peng Z K, et al. Electrostatic pull-in instability in MEMS/NEMS: A review[J]. Sensors and Actuators A: Physical, 2014, 214: 187–218.

    [17] Wang W M, Tao F G, Zhang J F, et al. A 19 element hexagonal actuator arrangement continuous face-sheet MEMS deformable mirror[J]. Key Engineering Materials, 2012, 503: 169–173.

    [18] Wang W M. Research on key technologies of surface- micromachined electrostatic actuated MEMS deformable mirrors[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 33–37.

    [19] Hudgin R. Wave-front compensation error due to finite corrector- element size[J]. Journal of the Optical Society of America, 1977, 67(3): 393–395.

    [20] Qian J, Liu C, Zhang D C, et al. Residual stresses in micro- electro-mechanical systems[J]. Journal of Mechanical Strength, 2001, 23(4): 393–401.

    [21] Dai Y P, Geng W D, Sun Z L, et al. Application of CMP planarization in LCoS[J]. Optoelectronic Technology, 2003, 23(1): 41–45.

    [22] Mali R K, Bifano T, Koester D. A design-based approach to planarization in multilayer surface micromachining[J]. Journal of Micromechanics and Microengineering, 1999, 9(4): 294–299.

    [23] Ling N, Guan C L. The development of deformable mirrors[J]. Opto-Electronic Engineering, 1995, 22(1): 14–22.

    CLP Journals

    [1] Liu Xin, Li Xinyang, Du Rui. Hysteresis nonlinear modeling and inverse compensation of piezoelectric actuators[J]. Opto-Electronic Engineering, 2019, 46(8): 180328

    Wang Weimin, Wang Qiang. Development and characterization of a 140-element MEMS deformable mirror[J]. Opto-Electronic Engineering, 2018, 45(3): 170698
    Download Citation