• Laser & Optoelectronics Progress
  • Vol. 59, Issue 4, 0424001 (2022)
Darong Zhu1、2、3、*, Shanji Yang1、2, Fangbin Wang1、2、3, Jingfa Lei1、2、3, Dagui Wang1、2, and Qinglei Luan1、2
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei , Anhui 230601, China
  • 2Key Laboratory of Construction Machinery Fault Diagnosis and Early Warning Technology, Anhui Jianzhu University, Hefei , Anhui 230601, China
  • 3Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei , Anhui 230601, China
  • show less
    DOI: 10.3788/LOP202158.0424001 Cite this Article Set citation alerts
    Darong Zhu, Shanji Yang, Fangbin Wang, Jingfa Lei, Dagui Wang, Qinglei Luan. Texture Characteristics of Polarized Thermal Images on Metal Surfaces in Fatigue Damage Process[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0424001 Copy Citation Text show less
    References

    [1] Peng Z C. Research on methods for structural life prediction and time-dependent reliability analysis using cumulative fatigue damage theories[D](2017).

    [2] Sun J, Chen S Y, Qu Y P et al. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller[J]. Chinese Journal of Mechanical Engineering, 28, 217-225(2015).

    [3] Fan J L, Guo X L, Wu C W. A new application of the infrared thermography for fatigue evaluation and damage assessment[J]. International Journal of Fatigue, 44, 1-7(2012).

    [4] Yao L J, Tong X Y, Lü S L. Fatigue damage model based on energy dissipation[J]. Journal of Mechanical Strength, 26, 522-525(2004).

    [5] Li N, Tong X Y, Yao L J. Temperature response and the micrograph change of pure copper under low cycle fatigue[J]. Journal of Materials Science and Engineering, 24, 754-757(2006).

    [6] Yao L J, Li B, Tong X Y. Experimental study of the correlation between energy dissipation and surface microstructure evolution during fatigue[J]. Journal of Northwestern Polytechnical University, 26, 225-228(2008).

    [7] Wang X G, Crupi V, Jiang C et al. Energy-based approach for fatigue life prediction of pure copper[J]. International Journal of Fatigue, 104, 243-250(2017).

    [8] Yi X B, Liang Z F, Shen J C et al. Study on the 304 stainless steel fatigue performance based on the infrared thermal image microscopy observation technology[J]. Chemical Engineering & Machinery, 44, 519-522, 575(2017).

    [9] Hwang S, An Y K, Kim J M et al. Monitoring and instantaneous evaluation of fatigue crack using integrated passive and active laser thermography[J]. Optics and Lasers in Engineering, 119, 9-17(2019).

    [10] Gosar A, Nagode M. Energy dissipation under thermomechanical fatigue loading[J]. International Journal of Fatigue, 43, 160-167(2012).

    [11] Karuskevich M, Karuskevich O, Maslak T et al. Extrusion/intrusion structures as quantitative indicators of accumulated fatigue damage[J]. International Journal of Fatigue, 39, 116-121(2012).

    [12] Tong X Y, Li H X, Yao L J et al. Feature extraction and analysis of surface microscopic image of pure copper subjecting low cycle fatigue[J]. Mechanical Science and Technology for Aerospace Engineering, 34, 1446-1450(2015).

    [13] Nunak T, Rakrueangdet K, Nunak N et al. Thermal image resolution on angular emissivity measurements using infrared thermography[C](2015).

    [14] Wang F B, Yi L, Wang F et al. Polarization bidirectional reflection distribution function of metal surfaces based on diffuse reflection optimization[J]. Acta Optica Sinica, 41, 1129002(2021).

    [15] Chen W L, Wu J L, Xu W B et al. Quantitative analysis based on infrared polarization characteristic of black body[J]. Journal of Infrared and Millimeter Waves, 36, 767-775(2017).

    [16] Chen W L, Wang S H, Jin W Q et al. Research of infrared polarization characteristics based on polarization micro-surface theory[J]. Journal of Infrared and Millimeter Waves, 33, 507-514(2014).

    [17] Yang M, Xu W B, Tian Y Z et al. Time-sharing infrared polarization imaging system for moving target detection[J]. Acta Optica Sinica, 40, 1511001(2020).

    [18] Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3, 610-621(1973).

    [19] Wang Z Z. Research on the classification method of remote sensing images based on texture and spectral information fusion[D](2010).

    [20] Wang F B, Sun F, Zhu D R et al. Metal fatigue damage assessment based on polarized thermography[J]. Acta Optica Sinica, 40, 1412002(2020).

    [21] Zhang Z, Liu X Y, Wang J L et al. Division-of-time long-wave infrared high frame frequency polarization imaging experiment[J]. Chinese Journal of Liquid Crystals and Displays, 34, 508-514(2019).

    [22] Zhu D R, Xu L, Wang F B et al. Evolution of metal surface topography during fatigue[J]. Metals, 7, 66(2017).

    Darong Zhu, Shanji Yang, Fangbin Wang, Jingfa Lei, Dagui Wang, Qinglei Luan. Texture Characteristics of Polarized Thermal Images on Metal Surfaces in Fatigue Damage Process[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0424001
    Download Citation