• Spectroscopy and Spectral Analysis
  • Vol. 41, Issue 4, 1144 (2021)
HUANG An1、2, XU Zhen-yu1, XIA Hui-hui1, YAO Lu1, RUAN Jun1, HU Jia-yi1, ZANG Yi-peng1、2, and KAN Rui-feng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2021)04-1144-07 Cite this Article
    HUANG An, XU Zhen-yu, XIA Hui-hui, YAO Lu, RUAN Jun, HU Jia-yi, ZANG Yi-peng, KAN Rui-feng. Measurement Method of Two-Dimensional Distribution of Temperature and Components in Gas Turbine Combustor Based on Wavelength Modulated Absorption Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1144 Copy Citation Text show less

    Abstract

    Tunable diode laser absorption spectroscopy (TDLAS) can realize the simultaneous measurement of multiple parameters such as temperature and component concentration, which has the advantages of small size, fast response and high environmental adaptability, so the technology has gradually become a major tool of combustion flow field diagnosis. TDLAS mainly includes direct absorption spectroscopy and wavelength modulation spectroscopy. Intensity normalized wavelength modulation spectroscopy is suitable for gas turbine flow field parameter measurement under severe application environment conditions, such as beam deflection effect caused by vibration, turbulence and strong thermal radiation background. Based on the TDLAS technology, carry out the 1f normalized wavelength modulation technique methods for measuring the parameters of gas turbine combustor temperature, the concentration of components research and laboratory test. A two-dimensional measurement scheme of temperature and concentration of H2O and CH4 in gas turbine combustor along the airflow direction was designed, and a single nozzle bench test of cold and hot state verification test was carried out. The measurement adopted 1f normalized WMS to restrain the rack vibration and the background noise of thermal radiation. The DFB laser in 1 392, 1 469 and 1 343 nm of butterfly package was used. The light output of the three lasers was time-division multiplexing. The absorption lines at 7 185.6, 6 807.83 and 7 444.3 cm-1 of H2O were selected and used in pairs to measure the temperature and H2O concentration in a certain range under the hot state. The DFB laser in 1 654 nm of butterfly package was employed for the measurement of the cold-state CH4 concentration. The laboratory verified the reliability of the measurement system. The CH4 standard gasin the range of 4%~6% was measured and compared with the actual value. The maximum relative deviation of concentration measurement was 3.72%. A temperature step within the range of 900~1 500 K was set in the high-temperature furnace, pure water vapor was filled in, and the temperature measurement value and concentration under different temperatures and pressures set were calculated. The results showed that the maximum relative deviation of temperature measurement was 3.07%, and the maximum relative deviation of water vapor was -2.00%, which reflected the reliability of the measurement system. In the gas turbine experiment, a set of the miniaturized measuring instrument was integrated, and the measurement structure of multi-beam laser transceiver was designed. In the experiment, two electric displacement tables with measuring structure were used to move at intervals of 5 mm and measure the 300 mm×60 mm combustion area in the combustion chamber of a gas turbine so as to obtain the results of hot and cold states under some conditions. By bicubic interpolation, a two-dimensional flow field map with a resolution of 0.5 mm was drawn. The results showed the real state of CH4 and flame distribution in the measurement area. In this paper, a new research method and technical means were proposed for the study of the mixing of fuel and air and the combustion characteristics of gas turbine nozzles.
    HUANG An, XU Zhen-yu, XIA Hui-hui, YAO Lu, RUAN Jun, HU Jia-yi, ZANG Yi-peng, KAN Rui-feng. Measurement Method of Two-Dimensional Distribution of Temperature and Components in Gas Turbine Combustor Based on Wavelength Modulated Absorption Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1144
    Download Citation