• Acta Optica Sinica
  • Vol. 40, Issue 19, 1912002 (2020)
Linlin Zhao1、2, Zihao Yuan1、2, Xiaojie Sun1、2, Mingfei Li1、2、*, and Yuanxing Liu1、2
Author Affiliations
  • 1Beijing Institute of Aerospace Control Devices, Beijing 100039, China
  • 2Quantum Engineering Research Center of China Aerospace Science and Technology Corporation, Beijing 100094, China
  • show less
    DOI: 10.3788/AOS202040.1912002 Cite this Article Set citation alerts
    Linlin Zhao, Zihao Yuan, Xiaojie Sun, Mingfei Li, Yuanxing Liu. Range and Attitude Measurements Based on Second-Order Correlations of Optical Field[J]. Acta Optica Sinica, 2020, 40(19): 1912002 Copy Citation Text show less
    References

    [1] Ye J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 29, 1153-1155(2004).

    [2] Coddington I, Swann W C, Nenadovic L et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 3, 351-356(2009).

    [3] Pierce R, Leitch J, Stephens M et al. Intersatellite range monitoring using optical interferometry[J]. Applied Optics, 47, 5007-5018(2008).

    [4] Xie G C, Ye Y D, Li J M et al. Echo characteristic and range error for pulse laser ranging[J]. Chinese Journal of Lasers, 45, 0610001(2018).

    [5] An N, Chen Y F, Liu C Z et al. Maximum detection range of satellite laser ranging system based on characteristic of laser transmission in atmosphere[J]. Acta Optica Sinica, 38, 0901003(2018).

    [6] Cui P F, Yang L H, Lin J R et al. Application of femtosecond optical frequency comb in precise absolute distance measurement[J]. Laser & Optoelectronics Progress, 55, 120011(2018).

    [7] McCarthy A, Collins R J, Krichel N J et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting[J]. Applied Optics, 48, 6241-6251(2009).

    [8] Molebny V. McManamon P F, Steinvall O, et al. Laser radar: historical prospective-from the East to the West[J]. Optical Engineering, 56, 031220(2017).

    [9] Zhu J, Chen X X, Huang P et al. Thermal-light-based ranging using second-order coherence[J]. Applied Optics, 51, 4885-4890(2012).

    [10] Xiao J J, Fang C, Han X C et al. Distance ranging based on quantum entanglement[J]. Chinese Physics Letters, 30, 100301(2013).

    [11] Boitier F, Godard A, Rosencher E et al. Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors[J]. Nature Physics, 5, 267-270(2009).

    [12] Hanbury Brown R, Twiss R Q. Correlation between photons in two coherent beams of light[J]. Nature, 177, 27-29(1956).

    [13] Hanbury Brown R, Twiss R Q. A test of a new type of stellar interferometer on Sirius[J]. Nature, 178, 1046-1048(1956).

    [14] Li M F, Mo X F, Zhang A N et al. The key technics in quantum imaging and its researching status[J]. Navigation and Control, 15, 1-9, 16(2016).

    [15] Ferri F, Magatti D, Sala V G et al. Longitudinal coherence in thermal ghost imaging[J]. Applied Physics Letters, 92, 261109(2008).

    [16] Gatti A, Magatti D, Ferri F. Three-dimensional coherence of light speckles: theory[J]. Physical Review A, 78, 063806(2008).

    [17] Magatti D, Gatti A, Ferri F. Three-dimensional coherence of light speckles: experiment[J]. Physical Review A, 79, 053831(2009).

    [18] Liu Y D, Wang J, Liang J W. Dynamic target pose measurement by laser tracking[J]. Laser & Infrared, 29, 148-151(1999).

    Linlin Zhao, Zihao Yuan, Xiaojie Sun, Mingfei Li, Yuanxing Liu. Range and Attitude Measurements Based on Second-Order Correlations of Optical Field[J]. Acta Optica Sinica, 2020, 40(19): 1912002
    Download Citation