• Journal of Semiconductors
  • Vol. 46, Issue 2, 022404 (2025)
Teng Zhan1,2, Jianwen Sun3, Jin Lin1,2, Banghong Zhang1,2..., Guanwan Liao4, Zewen Liu3, Junxi Wang1,2, Jinmin Li1,2 and Xiaoyan Yi1,2,*|Show fewer author(s)
Author Affiliations
  • 1Research and Development Center for Wide Bandgap Semiconductors, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Integrated Circuits, Tsinghua University, Beijing 100084, China
  • 4Beijing Wanlongjingyi Technology Co., Ltd., Beijing 101318, China
  • show less
    DOI: 10.1088/1674-4926/24080049 Cite this Article
    Teng Zhan, Jianwen Sun, Jin Lin, Banghong Zhang, Guanwan Liao, Zewen Liu, Junxi Wang, Jinmin Li, Xiaoyan Yi. Nanowatt-level optoelectronic GaN-based heterostructure artificial synaptic device for associative learning and neuromorphic computing[J]. Journal of Semiconductors, 2025, 46(2): 022404 Copy Citation Text show less
    References

    [1] D A Drachman. Do we have brain to spare. Neurology, 64, 2004(2005).

    [2] J G G Borst, B Sakmann. Calcium influx and transmitter release in a fast CNS synapse. Nature, 383, 431(1996).

    [3] S Cohen-Cory. The developing synapse: construction and modulation of synaptic structures and circuits. Science, 298, 770(2002).

    [4] Y Wang, L Yin, W Huang et al. Optoelectronic synaptic devices for neuromorphic computing. Adv Intell Syst, 3, 2000099(2021).

    [5] H Han, H Y Yu, H H Wei et al. Recent progress in three-terminal artiffcial synapses: From device to system. Small, 15, 1900695(2019).

    [6] L X Hu, J Yang, J R Wang et al. All-optically controlled memristor for optoelectronic neuromorphic computing. Adv Funct Mater, 31, 2005582(2021).

    [7] J H Zheng, Y M Du, Y J Dong et al. Fully light-modulated memristor based on ZnO/MoOx heterojunction for neuromorphic computing. Appl Phys Lett, 124, 133502(2024).

    [8] C Lu, J L Meng, J R Song et al. Self-rectifying all-optical modulated optoelectronic multistates memristor crossbar array for neuromorphic computing. Nano Lett, 24, 1667(2024).

    [9] Z D Luo, X Xia, M M Yang et al. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano, 14, 746(2020).

    [10] F Guo, M L Song, M C Wong et al. Multifunctional optoelectronic synapse based on ferroelectric van der waals heterostructure for emulating the entire human visual system. Adv Funct Mater, 32, 2108014(2022).

    [11] H K He, R Yang, W Zhou et al. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small, 14, 1800079(2018).

    [12] J R Yu, X X Yang, G Y Gao et al. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci Adv, 7, eabd9117(2021).

    [13] T Zhang, X Guo, P Wang et al. High performance artificial visual perception and recognition with a plasmon-enhanced 2D material neural network. Nat Commun, 15, 2471(2024).

    [14] J Sun, S Oh, Y Choi et al. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv Funct Mater, 28, 1804397(2018).

    [15] R Dutta, M Naqi, Y Cho et al. Augmented optoelectronic quantum dot-enhanced heterogeneous IGZO-Te photodiode for artificial synaptic image processing applications. Adv Funct Mater, 34, 2315058(2024).

    [16] F M Ma, Y B Zhu, Z W Xu et al. Optoelectronic perovskite synapses for neuromorphic computing. Adv Funct Mater, 30, 1908901(2020).

    [17] S Y Feng, J X Li, Z T Feng et al. Dual-mode conversion of photodetector and neuromorphic vision sensor via bias voltage regulation on a single device. Adv Mater, 35, 2308090(2023).

    [18] X Y Hua, J Y Zheng, X Han et al. Artifcial optoelectronic synapse with nanolayered GaN/AlN periodic structure for neuromorphic computing. ACS Appl Nano Mater, 6, 8461(2023).

    [19] X Liu, D H Wang, W Chen et al. Optoelectronic synapses with chemical-electric behaviors gallium nitride semiconductors for biorealistic neuromorphic functionality. Nat Commun, 15, 7671(2024).

    [20] W Alquraishi, Y Fu, W J Qiu et al. Hybrid optoelectronic synaptic functionality realized with ion gel-modulated In2O3 phototransistors. Org Electron, 71, 72(2019).

    [21] Z B Li, M Li, T X Zhu et al. Flexible printed ultraviolet-to-near-infrared broadband optoelectronic carbon nanotube synaptic transistors for fast and energy-efficient neuromorphic vision systems. Small Meth, 2400359(2024).

    [22] J W Sun, T Zhan, Z W Liu et al. Suspended tungsten trioxide (WO3) gate AlGaN/GaN heterostructure deep ultraviolet detectors with integrated micro-heater. Opt Express, 27, 36405(2019).

    [23] J W Sun, S Zhang, T Zhan et al. A high responsivity and controllable recovery ultraviolet detector based on a WO3 gate AlGaN/GaN heterostructure with an integrated micro-heater. J Mater Chem C, 8, 5409(2020).

    [24] J W Sun, T Zhan, R Sokolovskij et al. Enhanced sensitivity Pt/AlGaN/GaN heterostructure NO2 sensor using a two-step gate recess technique. IEEE Sens J, 21, 16475(2021).

    [25] T Zhan, J W Sun, T Feng et al. Electrical characteristics and photodetection mechanism of TiO2/AlGaN/GaN heterostructure-based ultraviolet detectors with a Schottky junction. J Mater Chem C, 11, 1704(2023).

    [26] C Y Yang, J W Sun, Y L Zhang et al. Construction of AlGaN/GaN high-electron-mobility transistor-based biosensor for ultrasensitive detection of SARS-CoV-2 spike proteins and virions. Biosens Bioelectron, 257, 116171(2024).

    [27] C H Kai, Y Wang, X Liu et al. AlGaN/GaN-based optoelectronic synaptic devices for neuromorphic computing. Adv Optical Mater, 11, 2202105(2023).

    [28] G M Zhang, H R Yu, Y M Shi et al. Flexible and low-voltage ITO synaptic transistors for biotic tactile sensing. Appl Phys Lett, 123, 023702(2023).

    [29] R C Atkinson, R M Shiffrin. The psychology of learning and motivation: advances in research and theory, 2, 89(2003).

    [30] F Yu, L Q Zhu, H Xiao et al. Restickable Oxide neuromorphic transistors with spike-timing- dependent plasticity and pavlovian associative learning activities. Adv Funct Mater, 28, 1804025(2018).

    [31] X D Ji, B D Paulsen, G K K Chik et al. Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat Commun, 12, 2480(2021).

    [32] J L Meng, T Y Wang, L Chen et al. Energy-efficient fexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy, 83, 105815(2021).

    Teng Zhan, Jianwen Sun, Jin Lin, Banghong Zhang, Guanwan Liao, Zewen Liu, Junxi Wang, Jinmin Li, Xiaoyan Yi. Nanowatt-level optoelectronic GaN-based heterostructure artificial synaptic device for associative learning and neuromorphic computing[J]. Journal of Semiconductors, 2025, 46(2): 022404
    Download Citation