• Chinese Optics Letters
  • Vol. 21, Issue 10, 101302 (2023)
Jialang Zhang1, Siyuan Zhang1, Junna Yao1, Xinhua Jiang1, Anting Wang1、*, and Qiwen Zhan2
Author Affiliations
  • 1Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/COL202321.101302 Cite this Article Set citation alerts
    Jialang Zhang, Siyuan Zhang, Junna Yao, Xinhua Jiang, Anting Wang, Qiwen Zhan. Slotless dispersion-flattened waveguides with more than five zero-dispersion wavelengths[J]. Chinese Optics Letters, 2023, 21(10): 101302 Copy Citation Text show less
    References

    [1] G. P. Agrawal. Nonlinear Fiber Optics(1981).

    [2] L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, A. E. Willner. On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses. Opt. Express, 19, 11584(2011).

    [3] L. Zhang, A. M. Agarwal, L. C. Kimerling, J. Michel. Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics, 3, 247(2013).

    [4] S. Roy, F. Biancalana. Formation of quartic solitons and a localized continuum in silicon-based slot waveguides. Phys. Rev. A, 87, 025801(2013).

    [5] Y. X. Fang, C. J. Bao, Z. Wang, B. Liu, L. Zhang, X. Han, Y. X. He, H. Huang, Y. X. Ren, Z. Q. Pan, Y. Yue. Three-octave supercontinuum generation using SiO2 cladded Si3N4 slot waveguide with all-normal dispersion. J. Light. Technol., 38, 3431(2020).

    [6] Z. J. Hu, L. J. Xu, J. Wang, Y. K. Zhai, L. Zhang. Flattened 2.5-octave supercontinuum in a silicon nitride waveguide pumped with picosecond pulses. IEEE J. Quantum Electron., 57, 1(2021).

    [7] S. Fatema, M. B. Mia, S. Kim. Multiple mode couplings in a waveguide array for broadband near-zero dispersion and supercontinuum generation. J. Light. Technol., 39, 216(2021).

    [8] J. Wang, Y. H. Guo, H. N. Liu, L. C. Kimerling, J. Michel, A. M. Agarwal, G. F. Li, L. Zhang. Robust cavity soliton formation with hybrid dispersion. Photonics Res., 6, 647(2018).

    [9] Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, L. Zhang. Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator. Nanophotonics, 7, 1461(2018).

    [10] J. F. Rong, Y. W. Ma, M. Xu, H. Yang. Interactions of the second-order solitons with an external probe pulse in the optical event horizon. Chin. Opt. Lett., 20, 111901(2022).

    [11] M. H. Yang, L. J. Xu, J. Wang, H. N. Liu, X. Y. Zhou, G. F. Li, L. Zhang. An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide. IEEE J. Sel. Top. Quantum Electron., 24, 8300607(2018).

    [12] L. J. Xu, M. H. Yang, Y. H. Guo, H. N. Liu, G. F. Li, L. Zhang. Ultrafast pulse manipulation in dispersion-flattened waveguides with four zero-dispersion wavelengths. J. Light. Technol., 37, 6174(2019).

    [13] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express, 14, 4357(2006).

    [14] J. I. Dadap, N. C. Panoiu, X. G. Chen, I. Hsieh, X. P. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. N. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood. Nonlinear-optical phase modification in dispersion-engineered Si photonic wires. Opt. Express, 16, 1280(2008).

    [15] L. Zhang, Y. Yue, Y. Y. Xiao-Li, J. Wang, R. G. Beausoleil, A. E. Willner. Flat and low dispersion in highly nonlinear slot waveguides. Opt. Express, 18, 13187(2010).

    [16] S. Mas, J. Caraquitena, J. V. Galán, P. Sanchis, J. Martí. Tailoring the dispersion behavior of silicon nanophotonic slot waveguides. Opt. Express, 18, 20839(2010).

    [17] L. Zhang, Y. Yue, R. G. Beausoleil, A. E. Willner. Flattened dispersion in silicon slot waveguides. Opt. Express, 18, 20529(2010).

    [18] L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. E. Willner. Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt. Express, 20, 1685(2012).

    [19] M. Zhu, H. J. Liu, X. F. Li, N. Huang, Q. B. Sun, J. Wen, Z. L. Wang. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Opt. Express, 20, 15899(2012).

    [20] Z. Jafari, F. Emami. Strip/slot hybrid arsenic tri-sulfide waveguide with ultra-flat and low dispersion profile over an ultra-wide bandwidth. Opt. Lett., 38, 3082(2013).

    [21] Y. H. Guo, Z. Jafari, A. M. Agarwal, L. C. Kimerling, G. F. Li, J. Michel, L. Zhang. Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths. Opt. Lett., 41, 4939(2016).

    [22] Y. H. Guo, L. J. Xu, Z. Jafari, A. M. Agarwal, L. C. Kimerling, G. F. Li, J. Michel, L. Zhang. Two-octave dispersion flattening with five zero-dispersion wavelengths in the deep mid-IR. Proc. SPIE, 10541, 162(2018).

    [23] M. L. Liu, C. W. Gu, X. N. Fan, Z. H. Li, H. M. Huang, Z. Z. Lu, W. Zhao. Efficient dispersion engineering for three-octave-spanning supercontinuum generation in nanophotonic waveguides. Opt. Laser Technol., 150, 107923(2022).

    [24] Y. S. Guo, Y. H. Guo, Z. Jafari, L. J. Xu, L. Zhang. Single-mode, single-polarization and dispersion-flattened waveguides based on silicon carbide and diamond. Opt. Laser Technol., 148, 107692(2022).

    [25] Y. H. Guo, Z. Jafari, L. J. Xu, C. J. Bao, P. C. Liao, G. F. Li, A. M. Agarwal, L. C. Kimerling, J. Michel, A. E. Willner, L. Zhang. Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photonics Res., 7, 127(2019).

    [26] M. Vlk, A. Datta, S. Alberti, G. S. Murugan, A. Aksnes, J. Jágerská. Free-standing tantalum pentoxide waveguides for gas sensing in the mid-infrared. Opt. Mater Express, 11, 3111(2021).

    [27] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 40, 4823(2015).

    [28] E. D. Palik. Handbook of Optical Constants of Solids(1998).

    [29] H. H. Li. Refractive index of alkaline earth halides and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data, 9, 161(1980).

    [30] D. Saha, R. S. Ajimsha, K. Rajiv, C. Mukherjee, M. Gupta, P. Misra, L. M. Kukreja. Spectroscopic ellipsometry characterization of amorphous and crystalline TiO2 thin films grown by atomic layer deposition at different temperatures. Appl. Surf. Sci., 315, 116(2014).

    [31] J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, W. T. Masselink. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt., 51, 6789(2012).

    [32] M. Meng, D. X. Yan, M. X. Cao, X. J. Li, G. H. Qiu, J. J. Li. Design of negative curvature fiber carrying multiorbital angular momentum modes for terahertz wave transmission. Results Phys., 29, 104766(2021).

    [33] Q. Lin, O. J. Painter, G. P. Agrawal. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express, 15, 16604(2007).

    Jialang Zhang, Siyuan Zhang, Junna Yao, Xinhua Jiang, Anting Wang, Qiwen Zhan. Slotless dispersion-flattened waveguides with more than five zero-dispersion wavelengths[J]. Chinese Optics Letters, 2023, 21(10): 101302
    Download Citation