• Acta Optica Sinica
  • Vol. 44, Issue 4, 0404001 (2024)
Yifan Hu1, Yulu Hua2, Ting Ji1、*, Linlin Shi2, Yanxia Cui2, and Guohui Li2、**
Author Affiliations
  • 1College of Physics, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • 2College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • show less
    DOI: 10.3788/AOS231612 Cite this Article Set citation alerts
    Yifan Hu, Yulu Hua, Ting Ji, Linlin Shi, Yanxia Cui, Guohui Li. P3HT∶Y6-Based Near-Infrared Organic Photomultiplication Photodetectors by Intermolecular Charge Transfer Effects[J]. Acta Optica Sinica, 2024, 44(4): 0404001 Copy Citation Text show less
    References

    [1] Guo D C, Yang L Q, Li J et al. Panchromatic photomultiplication-type organic photodetectors with planar/bulk heterojunction structure[J]. Science China Materials, 66, 1172-1179(2023).

    [2] Liu M, Wang J, Zhao Z J et al. Ultra-narrow-band NIR photomultiplication organic photodetectors based on charge injection narrowing[J]. The Journal of Physical Chemistry Letters, 12, 2937-2943(2021).

    [3] Nath D, Dey P, Joseph A M et al. Zero bias high responsive visible organic photodetector based on pentacene and C60[J]. Optics & Laser Technology, 131, 106393(2020).

    [4] Agostinelli T, Caironi M, Natali D et al. A planar organic near infrared light detector based on bulk heterojunction of a heteroquaterphenoquinone and poly [2-methoxy-5-(2′-ethyl-hexyloxy)-1, 4-phenylene vinylene][J]. Journal of Applied Physics, 104, 114508(2008).

    [5] Zhou X K, Yang D Z, Ma D G et al. Ultrahigh gain polymer photodetectors with spectral response from UV to near-infrared using ZnO nanoparticles as anode interfacial layer[J]. Advanced Functional Materials, 26, 6619-6626(2016).

    [6] Yang L Q, Guo D C, Li J et al. Low-cost copper electrode for high-performance panchromatic multiplication-type organic photodetectors with optical microcavity effect[J]. Advanced Functional Materials, 32, 2108839(2022).

    [7] Wang J B, Zheng Q D. Enhancing the performance of photomultiplication-type organic photodetectors using solution-processed ZnO as an interfacial layer[J]. Journal of Materials Chemistry C, 7, 1544-1550(2019).

    [8] Weng S Y, Jiang D Y, Zhao M. P3HT∶PC61BM as active layer for preparation of inorganic/organic heterojunction photodetector[J]. Acta Optica Sinica, 42, 1304001(2022).

    [9] Zhang X R, Jiang J Z, Feng B G et al. Organic photodetectors: materials, device, and challenges[J]. Journal of Materials Chemistry C, 11, 12453-12465(2023).

    [10] Zhao Z J, Xu C Y, Niu L B et al. Recent progress on broadband organic photodetectors and their applications[J]. Laser & Photonics Reviews, 14, 2000262(2020).

    [11] Yang D Z, Ma D G. Development of organic semiconductor photodetectors: from mechanism to applications[J]. Advanced Optical Materials, 7, 1800522(2019).

    [12] Sun J, Peng K J, Zhu L et al. Ultraviolet photodetector with bandpass characteristic based on a blend of PVK and PBD[J]. Chinese Optics Letters, 9, 052501(2011).

    [13] Xue X M, Ma H F, Hao Q et al. Infrared detectors of high carrier mobility colloidal quantum dots[J]. Acta Optica Sinica, 43, 2204002(2023).

    [14] Hao Q, Tang X, Chen M L. Infrared optoelectrical detection technology based on mercury chalcogenide colloidal quantum dots[J]. Acta Optica Sinica, 43, 1500001(2023).

    [15] Winkler L C, Kublitski J, Benduhn J et al. Photomultiplication enabling high-performance narrowband near-infrared organic photodetectors[J]. Advanced Electronic Materials, 9, 2201350(2023).

    [16] Li Q Y, Guo Y L, Liu Y Q. Exploration of near-infrared organic photodetectors[J]. Chemistry of Materials, 31, 6359-6379(2019).

    [17] Han S G, Lee H, Choi W et al. Photomultiplication-type organic photodetectors with fast response enabled by the controlled charge trapping dynamics of quantum dot interlayer[J]. Advanced Functional Materials, 31, 2102087(2021).

    [18] An T, Wu X M, Liu X Y. Multiplying organic photodetector based on double-doped C60∶DDQ trap[J]. Acta Photonica Sinica, 49, 1025001(2020).

    [19] An T, Liu X Y. Broadband organic color photodetectors with high gain based on C60-doped tri-phase bulk heterojunction[J]. Journal of Materials Science: Materials in Electronics, 31, 2757-2765(2020).

    [20] Gao X Y, Zhang Y, Cui Y X et al. Research progress in organic photomultiplication photodetector[J]. Laser & Optoelectronics Progress, 55, 070001(2018).

    [21] Tao S Z, Yang D Z, He G et al. Photomultiplication-type perovskite photodetectors base on air-processed perovskite films[J]. Organic Electronics, 118, 106800(2023).

    [22] Yang K X, Zhao Z J, Liu M et al. Employing liquid crystal material as regulator to enhance performance of photomultiplication type polymer photodetectors[J]. Chemical Engineering Journal, 427, 131802(2022).

    [23] Wang W B, Zhang F J, Bai H T et al. Photomultiplication photodetectors with P3HT: fullerene-free material as the active layers exhibiting a broad response[J]. Nanoscale, 8, 5578-5586(2016).

    [24] Kublitski J, Fischer A, Xing S et al. Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors[J]. Nature Communications, 12, 4259(2021).

    [25] Shi L L, Zhu Y Z, Li G H et al. Atomic-level chemical reaction promoting external quantum efficiency of organic photomultiplication photodetector exceeding 108% for weak-light detection[J]. Science Bulletin, 68, 928-937(2023).

    [26] Yamamoto J, Furukawa Y. Raman characterization and electrical properties of poly (3-hexylthiophene) doped electrochemically in an ionic liquid-gated transistor geometry[J]. Organic Electronics, 28, 82-87(2016).

    [27] Stylianakis M M, Stratakis E, Koudoumas E et al. Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites[J]. ACS Applied Materials & Interfaces, 4, 4864-4870(2012).

    [28] Wang T, Lu Y, Xu L et al. π‑conjugated poly (3-hexylthiophene-2, 5-diyl) thin film as a SERS substrate for molecule detection application[J]. Journal of Materials Science, 57, 16965-16973(2022).

    [29] Yin H, Tian T, Zhang R X et al. High-performance broadband photodetectors based on asymmetric all-carbon nano-heterostructures[J]. ACS Applied Nano Materials, 6, 11934-11943(2023).

    [30] Xu Z H, He M, Wu Q K et al. Ultrafast charge transfer 2D MoS2/organic heterojunction for sensitive photodetector[J]. Advanced Science, 10, 2207743(2023).

    [31] Iqbal M A, Liaqat A, Hussain S et al. Ultralow-transition-energy organic complex on graphene for high-performance shortwave infrared photodetection[J]. Advanced Materials, 32, 2002628(2020).

    [32] Kim J H, Liess A, Stolte M et al. An efficient narrowband near-infrared at 1040 nm organic photodetector realized by intermolecular charge transfer mediated coupling based on a squaraine dye[J]. Advanced Materials, 33, 2100582(2021).

    [33] Gibert-Roca M, Molet P, Mihi A et al. Near infrared organic photodetectors based on enhanced charge transfer state absorption by photonic architectures[J]. Journal of Materials Chemistry C, 8, 9688-9696(2020).

    Yifan Hu, Yulu Hua, Ting Ji, Linlin Shi, Yanxia Cui, Guohui Li. P3HT∶Y6-Based Near-Infrared Organic Photomultiplication Photodetectors by Intermolecular Charge Transfer Effects[J]. Acta Optica Sinica, 2024, 44(4): 0404001
    Download Citation