• Advanced Photonics Nexus
  • Vol. 2, Issue 5, 056009 (2023)
Zaiwei Cai1、†, Zihao Li1, Yingtao Zhang1, Chiyi Wei1, Hao Tian1, Molei Hao1, Xiaoming Wei1、2、3、4、*, and Zhongmin Yang1、2、3、4、5、*
Author Affiliations
  • 1South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
  • 2South China University of Technology, State Key Laboratory of Luminescent Materials, Guangzhou, China
  • 3South China University of Technology, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, China
  • 4South China University of Technology, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangzhou, China
  • 5South China Normal University, Research Institute of Future Technology, Guangzhou, China
  • show less
    DOI: 10.1117/1.APN.2.5.056009 Cite this Article Set citation alerts
    Zaiwei Cai, Zihao Li, Yingtao Zhang, Chiyi Wei, Hao Tian, Molei Hao, Xiaoming Wei, Zhongmin Yang, "High repetition rate ultrafast laser-structured nickel electrocatalyst for efficient hydrogen evolution reaction," Adv.Photon.Nexus 2, 056009 (2023) Copy Citation Text show less
    References

    [1] I. A. Poimenidis et al. Enhanced hydrogen production through alkaline electrolysis using laser-nanostructured nickel electrodes. Int. J. Hydrogen Energy, 46, 37162-37173(2021).

    [2] A. M. Abdalla et al. Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers. Manage., 165, 602-627(2018).

    [3] M. Yu, K. Wang, H. Vredenburg. Insights into low-carbon hydrogen production methods: green, blue and aqua hydrogen. Int. J. Hydrogen Energy, 46, 21261-21273(2021).

    [4] Z. Li et al. Recent progress in low Pt content electrocatalysts for hydrogen evolution reaction. Adv. Mater. Interfaces, 7, 2000396(2020).

    [5] W. Luo, Y. Wang, C. Cheng. Ru-based electrocatalysts for hydrogen evolution reaction: recent research advances and perspectives. Mater. Today Phys., 15, 100274(2020).

    [6] C. Li, J. B. Baek. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega, 5, 31-40(2019).

    [7] X. Cui et al. Monolithic nanoporous NiFe alloy by dealloying laser processed NiFeAl as electrocatalyst toward oxygen evolution reaction. Int. J. Hydrogen Energy, 43, 15234-15244(2018).

    [8] J. Zhu et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev., 120, 851-918(2019).

    [9] P. Bernard et al. Demonstration of the influence of specific surface area on reaction rate in heterogeneous catalysis. J. Chem. Educ., 98, 935-940(2021).

    [10] E. Navarro Flores, Z. Chong, S. Omanovic. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A: Chem., 226, 179-197(2005).

    [11] L. Lehmann et al. Irregular electrodeposition of Cu-Sn alloy coatings in [EMIM] Cl outside the glove box with large layer thickness. Coatings, 11, 310(2021).

    [12] B. Mahaling, D. S. Katti. Fabrication of micro-structures of poly [(R)-3-hydroxybutyric acid] by electro-spraying/-spinning: understanding the influence of polymer concentration and solvent type. J. Mater. Sci., 49, 4246-4260(2014).

    [13] J. Salmones et al. Textural characterisation of iron-promoted Raney nickel catalysts synthesised by mechanical alloying. Adsorption Sci. Technol., 19, 871-885(2001).

    [14] I. Brown, S. Sotiropoulos. Preparation and characterization of microporous Ni coatings as hydrogen evolving cathodes. J. Appl. Electrochem., 30, 107-111(2000).

    [15] P. A. Nelson et al. Mesoporous nickel/nickel oxide a nanoarchitectured electrode. Chem. Mater., 14, 524-529(2002).

    [16] Z. Lin, M. Hong. Femtosecond laser precision engineering: from micron, submicron, to nanoscale. Ultrafast Sci., 2021, 9783514(2021).

    [17] D. Zhang et al. Carbonized hybrid micro/nanostructured metasurfaces produced by femtosecond laser ablation in organic solvents for biomimetic antireflective surfaces. ACS Appl. Nano Mater., 3, 1855-1871(2020).

    [18] T. Y. Hwang, A. Vorobyev, C. Guo. Formation of solar absorber surface on nickel with femtosecond laser irradiation. Appl. Phys. A, 108, 299-303(2012).

    [19] A. Abou Khalil et al. Direct laser writing of a new type of waveguides in silver containing glasses. Sci. Rep., 7, 11124(2017).

    [20] D. J. Joe et al. Laser–material interactions for flexible applications. Adv. Mater., 29, 1606586(2017).

    [21] S. Wang et al. In situ synthesis of NiO at Ni micro/nanostructures as supercapacitor electrodes based on femtosecond laser adjusted electrochemical anodization. Appl. Surf. Sci., 541, 148216(2021).

    [22] A. Klos et al. Ultrafast laser processing of nanostructured patterns for the control of cell adhesion and migration on titanium alloy. Nanomaterials, 10, 864(2020).

    [23] Y. Huang et al. Ultrafast hole deformation revealed by molecular attosecond interferometry. Ultrafast Sci., 2021, 9837107(2021).

    [24] B. Chandu et al. Fabrication of nanocages on nickel using femtosecond laser ablation and trace level detection of malachite green and Nile blue dyes using surface enhanced Raman spectroscopic technique. Opt. Laser Technol., 131, 106454(2020).

    [25] B. K. Nayak, M. C. Gupta. Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Opt. Lasers Eng., 48, 940-949(2010).

    [26] K. Sugioka, Y. Cheng. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).

    [27] S. A. Jalil et al. Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams. Appl. Surf. Sci., 471, 516-520(2019).

    [28] C. A. Zuhlke, T. P. Anderson, D. R. Alexander. Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses. Opt. Express, 21, 8460-8473(2013).

    [29] S. Kontermann et al. Laser processed black silicon for photovoltaic applications. Energy Procedia, 27, 390-395(2012).

    [30] G. Ou et al. Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting. Nano Energy, 35, 207-214(2017).

    [31] Z. Li et al. Significantly enhanced electrocatalytic activity of copper for hydrogen evolution reaction through femtosecond laser blackening. Int. J. Hydrogen Energy, 46, 10783-10788(2021).

    [32] J. Yong et al. Nature-inspired superwettability achieved by femtosecond lasers. Ultrafast Sci., 2022, 9895418(2022).

    [33] T. Baldacchini et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir, 22, 4917-4919(2006).

    [34] J. A. Cebollero et al. Characterization of laser-processed thin ceramic membranes for electrolyte-supported solid oxide fuel cells. Int. J. Hydrogen Energy, 42, 13939-13948(2017).

    [35] J. Wu et al. Laser fabrication of bioinspired gradient surfaces for wettability applications. Adv. Mater. Interfaces, 8, 2001610(2021).

    [36] A. Gabler et al. Ultrashort pulse laser-structured nickel surfaces as hydrogen evolution electrodes for alkaline water electrolysis. Int. J. Hydrogen Energy, 42, 10826-10833(2017).

    [37] T. Rauscher et al. Femtosecond-laser structuring of Ni electrodes for highly active hydrogen evolution. Electrochim. Acta, 247, 1130-1139(2017).

    [38] A. R. Neale et al. Electrochemical performance of laser micro-structured nickel oxyhydroxide cathodes. J. Power Sources, 271, 42-47(2014).

    [39] C. Kerse et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 537, 84-88(2016).

    [40] L. Torrisi et al. Nickel plasma produced by 532-nm and 1064-nm pulsed laser ablation. Plasma Phys. Rep., 34, 547-554(2008).

    [41] C. A. Zuhlke, T. P. Anderson, D. R. Alexander. Comparison of the structural and chemical composition of two unique micro/nanostructures produced by femtosecond laser interactions on nickel. Appl. Phys. Lett., 103, 121603(2013).

    [42] A. Nakhoul et al. Self-organization regimes induced by ultrafast laser on surfaces in the tens of nanometer scales. Nanomaterials, 11, 1020(2021).

    [43] K. Yin et al. Micro torch assisted nanostructures’ formation of nickel during femtosecond laser surface interactions. Appl. Phys. Lett., 108, 241601(2016).

    [44] Z. Li, X. Wei, Z. Yang. Pulsed laser 3D-micro/nanostructuring of materials for electrochemical energy storage and conversion. Prog. Mater Sci., 113, 101052(2022).

    [45] M. Gong et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun., 5, 4695(2014).

    [46] M. Luo et al. Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem. Sci., 14, 3400-3414(2023).

    [47] Z. Y. Zhang et al. Cu-Zn-based alloy/oxide interfaces for enhanced electroreduction of CO2 to C2+ products. J. Energy Chem., 83, 90-97(2023). https://doi.org/10.1016/j.jechem.2023.04.034

    [48] G. B. Darband, M. Aliofkhazraei, A. S. Rouhaghdam. Nickel nanocones as efficient and stable catalyst for electrochemical hydrogen evolution reaction. Int. J. Hydrogen Energy, 42, 14560-14565(2017).

    [49] H. Herrera Hernandez, M. El-Azazy, M. Min, P. Annus et al. Electrochemical impedance spectroscopy (EIS): a review study of basic aspects of the corrosion mechanism applied to steels. Electrochemical Impedance Spectroscopy, 137-144(2020).

    [50] W. Zhai et al. Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts. InfoMat, 4, e12357(2022).

    [51] S. Eliezer et al. Synthesis of nanoparticles with femtosecond laser pulses. Phys. Rev. B, 69, 144119(2004).

    Zaiwei Cai, Zihao Li, Yingtao Zhang, Chiyi Wei, Hao Tian, Molei Hao, Xiaoming Wei, Zhongmin Yang, "High repetition rate ultrafast laser-structured nickel electrocatalyst for efficient hydrogen evolution reaction," Adv.Photon.Nexus 2, 056009 (2023)
    Download Citation