• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 2, 197 (2022)
Yifan SUN*, Tian CHEN, Zhuo ZHANG, Lingjun KONG, and Xiangdong ZHANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.02.003 Cite this Article
    SUN Yifan, CHEN Tian, ZHANG Zhuo, KONG Lingjun, ZHANG Xiangdong. Classical optical correlation in beam fields with orbital angular momentum and its application[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 197 Copy Citation Text show less
    References

    [1] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]. Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994: 124-134.

    [2] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560: 7-11.

    [3] Ekert A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 1991, 67(6): 661-663.

    [4] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters, 1992, 69(20): 2881-2884.

    [5] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete?[J]. Physical Review, 1935, 47(10): 777-780.

    [6] Spreeuw R J C. Classical wave-optics analogy of quantum-information processing[J]. Physical Review A, 2001, 63(6): 062302.

    [7] Spreeuw R J C. A classical analogy of entanglement[J]. Foundations of Physics, 1998, 28(3): 361-374.

    [8] Kagalwala K H, Di Giuseppe G, Abouraddy A F, et al. Bell’s measure in classical optical coherence[J]. Nature Photonics, 2013, 7(1): 72-78.

    [9] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding[J]. Nature Physics, 2008, 4(4): 282-286.

    [10] Chen L X, Lei J J, Romero J. Quantum digital spiral imaging[J]. Light: Science & Applications, 2014, 3(3): e153.

    [11] Wang X L, Luo Y H, Huang H L, et al. 18-qubit entanglement with six photons’ three degrees of freedom[J]. Physical Review Letters, 2018, 120(26): 260502.

    [12] Simon B N, Simon S, Gori F, et al. Nonquantum entanglement resolves a basic issue in polarization optics[J]. Physical Review Letters, 2010, 104(2): 023901.

    [13] Karimi E, Boyd R W. Classical entanglement?[J]. Science, 2015, 350(6265): 1172-1173.

    [14] Qian X F, Eberly J H. Entanglement and classical polarization states[J]. Optics Letters, 2011, 36(20): 4110-4112.

    [15] Souza C E R, Huguenin J A O, Milman P, et al. Topological phase for spin-orbit transformations on a laser beam[J]. Physical Review Letters, 2007, 99(16): 160401.

    [16] Borges C V S, Hor-Meyll M, Huguenin J A O, et al. Bell-like inequality for the spin-orbit separability of a laser beam[J]. Physical Review A, 2010, 82(3): 033833.

    [17] Song X B, Sun Y F, Li P Y, et al. Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light[J]. Scientific Reports, 2015, 5(1): 14113.

    [18] Passos M H M, Balthazar W F, de Barros J A, et al. Classical analog of quantum contextuality in spin-orbit laser modes[J]. Physical Review A, 2018, 98(6): 062116.

    [19] Qian X F, Little B, Howell J C, et al. Violation of Bell’s inequalities with classical Shimony-Wolf states: Theory and experiment[J]. Quant-Ph, 2014, arXiv: 1406.3338v1.

    [20] de Oliveira A N, Walborn S P, Monken C H. Implementing the Deutsch algorithm with polarization and transverse spatial modes[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(9): 288-292.

    [21] Deng L P, Wang H B, Wang K G. Quantum CNOT gates with orbital angular momentum and polarization of single-photon quantum logic[J]. Journal of the Optical Society of America B, 2007, 24(9): 2517.

    [22] Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303-332.

    [23] Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579.

    [24] Hashemi Rafsanjani S M, Mirhosseini M, Magaa-Loaiza O S, et al. State transfer based on classical nonseparability[J]. Physical Review A, 2015, 92(2): 023827.

    [25] Pinheiro da Silva B, Astigarreta Leal M, Souza C E R, et al. Spin-orbit laser mode transfer via a classical analogue of quantum teleportation[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49(5): 055501.

    [26] Milione G, Nguyen T A, Leach J, et al. Using the nonseparability of vector beams to encode information for optical communication[J]. Optics Letters, 2015, 40(21): 4887-4890.

    [27] Milione G, Lavery M P J, Huang H, et al. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer[J]. Optics Letters, 2015, 40(9): 1980.

    [28] Li P, Wang B, Zhang X. High-dimensional encoding based on classical nonseparability[J]. Optics Express, 2016, 24(13): 15143-15159.

    [29] Cheng W, Haus J W, Zhan Q. Propagation of vector vortex beams through a turbulent atmosphere[J]. Optics Express, 2009, 17(20): 17829-17836.

    [30] McLaren M, Konrad T, Forbes A. Measuring the nonseparability of vector vortex beams[J]. Physical Review A, 2015, 92(2): 023833.

    [31] Fickler R, Lapkiewicz R, Ramelow S, et al. Quantum entanglement of complex photon polarization patterns in vector beams[J]. Physical Review A, 2014, 89(6): 060301.

    [32] Tppel F, Aiello A, Marquardt C, et al. Classical entanglement in polarization metrology[J]. New Journal of Physics, 2014, 16(7): 073019.

    [33] Berg-Johansen S, Tppel F, Stiller B, et al. Classically entangled optical beams for high-speed kinematic sensing[J]. Optica, 2015, 2(10): 864.

    [34] Ndagano B, Perez-Garcia B, Roux F S, et al. Characterizing quantum channels with non-separable states of classical light[J]. Nature Physics, 2017, 13(4): 397-402.

    [35] Otte E, Rosales-Guzmán C, Ndagano B, et al. Entanglement beating in free space through spin-orbit coupling[J]. Light: Science & Applications, 2018, 7(5): 18009.

    [36] Shen Y J, Nape I, Yang X L, et al. Creation and control of high-dimensional multi-partite classically entangled light[J]. Light: Science & Applications, 2021, 10(1): 50.

    [37] Liu S, Liu S, Yang C, et al. Classical simulation of high-dimensional entanglement by non-separable angular-radial modes[J]. Optics Express, 2019, 27(13): 18363-18375.

    [38] Bouchard F, Valencia N H, Brandt F, et al. Measuring azimuthal and radial modes of photons[J]. Optics Express, 2018, 26(24): 31925.

    [39] Ding D S, Dong M X, Zhang W, et al. Broad spiral bandwidth of orbital angular momentum interface between photon and memory[J]. Communications Physics, 2019, 2(1): 100.

    [40] Clark L W, Schine N, Baum C, et al. Observation of Laughlin states made of light[J]. Nature, 2020, 582(7810): 41-45.

    [41] Wang Z Y, Zhan Z Y, Fu X, et al. Classical structured light analogy of quantum squeezed state[J]. Physics, 2021, arXiv: 2104. 06801.

    [42] Lee K F, Thomas J E. Experimental simulation of two-particle quantum entanglement using classical fields[J]. Physical Review Letters, 2002, 88(9): 097902.

    [43] Lee K F, Thomas J E. Entanglement with classical fields[J]. Physical Review A, 2004, 69(5): 052311.

    [44] Sun Y F, Song X B, Qin H W, et al. Non-local classical optical correlation and implementing analogy of quantum teleportation[J]. Scientific Reports, 2015, 5(1): 9175.

    [45] Yang Z W, Sun Y F, Li P Y, et al. Experimental realization of the analogy of quantum dense coding in classical optics[J]. AIP Advances, 2016, 6(6): 065008.

    [46] Barreiro J T, Langford N K, Peters N A, et al. Generation of hyperentangled photon pairs[J]. Physical Review Letters, 2005, 95(26): 260501.

    [47] Barreiro J T, Wei T C, Kwiat P G. Remote preparation of single-photon “hybrid" entangled and vector-polarization states[J]. Physical Review Letters, 2010, 105(3): 030407.

    [48] Li P Y, Sun Y F, Yang Z W, et al. Classical hypercorrelation and wave-optics analogy of quantum superdense coding[J]. Scientific Reports, 2016, 5(1): 18574.

    [49] Karimi E, Leach J, Slussarenko S, et al. Spin-orbit hybrid entanglement of photons and quantum contextuality[J]. Physical Review A, 2010, 82(2): 022115.

    [50] Wei T C, Barreiro J T, Kwiat P G. Hyperentangled Bell-state analysis[J]. Physical Review A, 2007, 75(6): 060305.

    [51] Han Y, Li G. Coherent optical communication using polarization multiple-input-multiple-output[J]. Optics Express, 2005, 13(19): 7527-7534.

    [52] Li G F. Recent advances in coherent optical communication[J]. Advances in Optics and Photonics, 2009, 1(2): 279.

    [53] Roudas I, Vgenis A, Petrou C S, et al. Optimal polarization demultiplexing for coherent optical communications systems[J]. Journal of Lightwave Technology, 2010, 28(7): 1121-1134.

    [54] Dada A C, Leach J, Buller G S, et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities[J]. Nature Physics, 2011, 7(9): 677-680.

    [55] Collins D, Gisin N, Linden N, et al. Bell inequalities for arbitrarily high-dimensional systems[J]. Physical Review Letters, 2002, 88(4): 040404.

    [56] Li P, Zhang S, Zhang X. Classically high-dimensional correlation: Simulation of high-dimensional entanglement[J]. Optics Express, 2018, 26(24): 31413.

    [57] Huang Y F, Li C F, Zhang Y S, et al. Experimental test of the Kochen-Specker theorem with single photons[J]. Physical Review Letters, 2003, 90(25): 250401.

    [58] Kochen S, Specker E P. The problem of hidden variables in quantum mechanics[J]. Journal of Mathematics and Mechanics, 1967, 17(1): 59-87.

    [59] Kirchmair G, Zhringer F, Gerritsma R, et al. State-independent experimental test of quantum contextuality[J]. Nature, 2009, 460(7254): 494-497.

    [60] Leggett A J, Garg A. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?[J]. Physical Review Letters, 1985, 54(9): 857-860.

    [61] Zhou Z Q, Huelga S F, Li C F, et al. Experimental detection of quantum coherent evolution through the violation of Leggett-Garg-Type inequalities[J]. Physical Review Letters, 2015, 115(11): 113002.

    [62] Zhang X, Sun Y F, Song X B, et al. Realization of Hardy’s thought experiment using classical light[J]. Journal of Optics, 2016, 18(9): 095604.

    [63] Cabello A, Gu M L, Gühne O, et al. Optimal classical simulation of state-independent quantum contextuality[J]. Physical Review Letters, 2018, 120(13): 130401.

    [64] Li T, Zeng Q, Song X B, et al. Experimental contextuality in classical light[J]. Scientific Reports, 2017, 7(1): 44467.

    [65] Frustaglia D, Baltanás J P, Velázquez-Ahumada M C, et al. Classical physics and the bounds of quantum correlations[J]. Physical Review Letters, 2016, 116(25): 250404.

    [66] Kurzyński P, Cabello A, Kaszlikowski D. Fundamental monogamy relation between contextuality and nonlocality[J]. Physical Review Letters, 2014, 112(10): 100401.

    [67] Zhan X, Zhang X, Li J, et al. Realization of the contextuality-nonlocality tradeoff with a qubit-qutrit photon pair[J]. Physical Review Letters, 2016, 116(9): 090401.

    [68] Li T, Zhang X, Zeng Q, et al. Experimental simulation of monogamy relation between contextuality and nonlocality in classical light[J]. Optics Express, 2018, 26(9): 11959-11975.

    [69] Zhang X, Li T, Yang Z W, et al. Experimental observation of the Leggett-Garg inequality violation in classical light[J]. Journal of Optics, 2019, 21(1): 015605.

    [70] Aharonov Y, Davidovich L, Zagury N. Quantum random walks[J]. Physical Review A, 1993, 48(2): 1687-1690.

    [71] Venegas-Andraca S E. Quantum walks: A comprehensive review[J]. Quantum Information Processing, 2012, 11(5): 1015-1106.

    [72] Farhi E, Gutmann S. Quantum computation and decision trees[J]. Physical Review A, 1998, 58(2): 915-928.

    [73] Chen T, Zhang X. The defect-induced localization in many positions of the quantum random walk[J]. Scientific Reports, 2016, 6(1): 25767.

    [74] Chen T, Zhang X D. Extraordinary behaviors in a two-dimensional decoherent alternative quantum walk[J]. Physical Review A, 2016, 94(1): 012316.

    [75] Chen T, Wang B, Zhang X D. Controlling probability transfer in the discrete-time quantum walk by modulating the symmetries[J]. New Journal of Physics, 2017, 19(11): 113049.

    [76] Shenvi N, Kempe J, Whaley K B. Quantum random-walk search algorithm[J]. Physical Review A, 2003, 67(5): 052307.

    [77] Childs A M. Universal computation by quantum walk[J]. Physical Review Letters, 2009, 102(18): 180501.

    [78] Farhi E, Goldstone J, Gutmann S. A quantum algorithm for the Hamiltonian NAND tree[J]. Theory of Computing, 2008, 4(1): 169-190.

    [79] Tang H, Di Franco C, Shi Z Y, et al. Experimental quantum fast hitting on hexagonal graphs[J]. Nature Photonics, 2018, 12(12): 754-758.

    [80] Wu T, Izaac J A, Li Z X, et al. Experimental parity-time symmetric quantum walks for centrality ranking on directed graphs[J]. Physical Review Letters, 2020, 125(24): 240501.

    [81] Pan N Q, Chen T, Sun H J, et al. Electric-circuit realization of fast quantum search[J]. Research, 2021, 2021: 1-8.

    [82] Kitagawa T, Rudner M S, Berg E, et al. Exploring topological phases with quantum walks[J]. Physical Review A, 2010, 82(3): 033429.

    [83] Asbóth J K. Symmetries, topological phases, and bound states in the one-dimensional quantum walk[J]. Physical Review B, 2012, 86(19): 195414.

    [84] Kitagawa T, Broome M A, Fedrizzi A, et al. Observation of topologically protected bound states in photonic quantum walks[J]. Nature Communications, 2012, 3: 882.

    [85] Xiao L, Zhan X, Bian Z H, et al. Observation of topological edge states in parity-time-symmetric quantum walks[J]. Nature Physics, 2017, 13(11): 1117-1123.

    [86] Chen T, Wang B, Zhang X D. Characterization of topological phases and selection of topological interface modes in the parity-time-symmetric quantum walk[J]. Physical Review A, 2018, 97(5): 052117.

    [87] Wang B, Chen T, Zhang X D. Experimental observation of topologically protected bound states with vanishing Chern numbers in a two-dimensional quantum walk[J]. Physical Review Letters, 2018, 121(10): 100501.

    [88] Wang B, Chen T, Zhang X D. Observation of novel robust edge states in dissipative non-Hermitian quantum walks[J]. Laser & Photonics Reviews, 2020, 14(7): 2000092.

    [89] Schreiber A, Gábris A, Rohde P P, et al. A 2D quantum walk simulation of two-particle dynamics[J]. Science, 2012, 336(6077): 55-58.

    [90] Goyal S K, Roux F S, Forbes A, et al. Implementing quantum walks using orbital angular momentum of classical light[J]. Physical Review Letters, 2013, 110(26): 263602.

    [91] Sephton B, Dudley A, Ruffato G, et al. A versatile quantum walk resonator with bright classical light[J]. PLoS One, 2019, 14(4): e0214891.

    [92] Broome M A, Fedrizzi A, Lanyon B P, et al. Discrete single-photon quantum walks with tunable decoherence[J]. Physical Review Letters, 2010, 104(15): 153602.

    [93] Manouchehri K, Wang J B. Physical Implementation of Quantum Walks[M]. Heidelberg: Springer Publishing Company, Incorporated, 2013.

    [94] Xue P, Qin H, Tang B. Trapping photons on the line: Controllable dynamics of a quantum walk[J]. Scientific Reports, 2014, 4: 4825.

    SUN Yifan, CHEN Tian, ZHANG Zhuo, KONG Lingjun, ZHANG Xiangdong. Classical optical correlation in beam fields with orbital angular momentum and its application[J]. Chinese Journal of Quantum Electronics, 2022, 39(2): 197
    Download Citation