• Acta Photonica Sinica
  • Vol. 52, Issue 12, 1210002 (2023)
Feifei WANG1,3, Huijie ZHAO1,2,3, Na LI1,2,3,*, Siyuan LI4, and Yu CAI5
Author Affiliations
  • 1Key Laboratory of Precision Opto-Mechatronics Technology,Ministry of Education,School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China
  • 2Institute of Artificial Intelligence,Beihang University,Beijing 100191,China
  • 3Aerospace Optical-Microwave Integrated Precision Intelligent Sensing,Key Laboratory of Ministry of Industry and Information Technology,Beihang University,Beijing 100191,China
  • 4Key Laboratory of Spectral Imaging Technology,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China
  • 5China Academy of Launch Vehicle Technology,Beijing 100076,China
  • show less
    DOI: 10.3788/gzxb20235212.1210002 Cite this Article
    Feifei WANG, Huijie ZHAO, Na LI, Siyuan LI, Yu CAI. Spectral-spatial Attention Residual Networks for Hyperspectral Image Classification[J]. Acta Photonica Sinica, 2023, 52(12): 1210002 Copy Citation Text show less
    References

    [1] B RASTI, Danfeng HONG, Renlong HANG et al. Feature extraction for hyperspectral imagery: the evolution from shallow to deep(overview and toolbox). IEEE Geoscience and Remote Sensing Magazine, 8, 60-88(2020).

    [2] G E HINTON, R R SALAKHUTDINOV. Reducing the dimensionality of data with neural networks. Science, 313, 504-507(2006).

    [3] Wei HU, Yangyu HUANG, Li WEI et al. Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, 2015, 1-12(2015).

    [4] Lichao MOU, P GHAMISI, Xiaoxiang ZHU. Deep recurrent neural networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 55, 3639-3655(2017).

    [5] Zilong ZHONG, Ying LI, Lingfei MA et al. Spectral-spatial transformer network for hyperspectral image classification: a factorized architecture search framework. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15(2021).

    [6] S GHADERIZADEH, D ABASIMOGHADAM, A SHARIFI et al. Hyperspectral image classification using a hybrid 3D-2D convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7570-7588(2021).

    [7] Hao WU, S PRASAD. Convolutional recurrent neural networks for hyperspectral data classifification. Remote Sensing, 9, 298(2017).

    [8] Zilong ZHONG, J LI, Zhiming LUO et al. Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Transactions on Geoscience and Remote Sensing, 56, 847-858(2017).

    [9] Yuetian SHI, Bin FU, Nan WANG et al. Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework. Drones, 7, 1-30(2023).

    [10] Yue XU, Jianya GONG, Xin HUANG et al. Luojia-HSSR: a high spatial-spectral resolution remote sensing dataset for land-cover classification with a new 3D-HRNet. Geo-spatial Information Science, 1-13(2022).

    [11] Kai YANG, Hao SUN, Chunbo ZOU et al. Cross-attention spectral-spatial network for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14(2021).

    [12] Xiangtao ZHENG, Hao SUN, Xiaoqiang LU et al. Rotation-invariant attention network for hyperspectral image classification. IEEE Transactions on Image Processing, 31, 4251-4265(2022).

    [13] Shuai FANG, Kun ZHANG, Jing ZHANG et al. Hyperspectral image classification with enhanced class separability. Journal of Image and Graphics, 26, 1940-1951(2021).

    [14] A VASWANI, N SHAZEER, N PARMAR et al. Attention is all you need, 30, 1-11(2017).

    [15] Fulin LUO, Liangpei ZHANG, Xiaocheng ZHOU et al. Sparse-adaptive hypergraph discriminant analysis for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 17, 1082-1086(2019).

    [16] A VEITi, M J WILBER, S BELONGIE. Residual networks behave like ensembles of relatively shallow networks, 550-558(2016).

    [17] Gao HUANG, Zhuang LIU, L D M MAATEN et al. Densely connected convolutional networks, 4700-4708(2017).

    [18] Kaiming HE, Xiangyu ZHANG, Shaoping REN et al. Deep residual learning for image recognition, 770-778(2016).

    [19] Kaiming HE, Xiangyu ZHANG, Shaoping REN et al. Identity mappings in deep residual networks, 630-645(2016).

    [20] M E PAOLETTI, J M HAUT, B R FERNANDEZ et al. Deep pyramidal residual networks for spectral-spatial hyperspectral image classifification. IEEE Transactions on Geoscience and Remote Sensing, 57, 740-754(2019).

    [21] Wenju WANG, Shuguang DOU, Zhongmin Jiang et al. A fast dense spectral-spatial convolution network framework for hyperspectral images classifification. Remote Sensing, 10, 1068(2018).

    [22] Yanan LUO, Jie ZOU, Chengfei YAO et al. HSI-CNN: a novel convolution neural network for hyperspectral image, 464-469(2018).

    [23] Ying LI, Haokui ZHANG, Qiang SHEN. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sensing, 9, 67(2017).

    [24] S K ROY, G KRISHNA, S R DUBEY et al. HybridSN: Exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 17, 277-281(2019).

    [25] Le SUN, Guangrui ZHAO, Yuhui ZHENG et al. Spectral-spatial feature tokenization transformer for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14(2022).

    Feifei WANG, Huijie ZHAO, Na LI, Siyuan LI, Yu CAI. Spectral-spatial Attention Residual Networks for Hyperspectral Image Classification[J]. Acta Photonica Sinica, 2023, 52(12): 1210002
    Download Citation