• Acta Photonica Sinica
  • Vol. 52, Issue 12, 1210002 (2023)
Feifei WANG1,3, Huijie ZHAO1,2,3, Na LI1,2,3,*, Siyuan LI4, and Yu CAI5
Author Affiliations
  • 1Key Laboratory of Precision Opto-Mechatronics Technology,Ministry of Education,School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China
  • 2Institute of Artificial Intelligence,Beihang University,Beijing 100191,China
  • 3Aerospace Optical-Microwave Integrated Precision Intelligent Sensing,Key Laboratory of Ministry of Industry and Information Technology,Beihang University,Beijing 100191,China
  • 4Key Laboratory of Spectral Imaging Technology,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China
  • 5China Academy of Launch Vehicle Technology,Beijing 100076,China
  • show less
    DOI: 10.3788/gzxb20235212.1210002 Cite this Article
    Feifei WANG, Huijie ZHAO, Na LI, Siyuan LI, Yu CAI. Spectral-spatial Attention Residual Networks for Hyperspectral Image Classification[J]. Acta Photonica Sinica, 2023, 52(12): 1210002 Copy Citation Text show less
    Flow chart of spectral-spatial attention residual network
    Fig. 1. Flow chart of spectral-spatial attention residual network
    The structure of the central region spectral attention mechanism
    Fig. 2. The structure of the central region spectral attention mechanism
    The structure of the spatial attention mechanism
    Fig. 3. The structure of the spatial attention mechanism
    The structure of the residual network
    Fig. 4. The structure of the residual network
    The spectral residual network module
    Fig. 5. The spectral residual network module
    The spatial residual network module
    Fig. 6. The spatial residual network module
    The flow chart of SSARN with IP dataset as an example
    Fig. 7. The flow chart of SSARN with IP dataset as an example
    IP dataset
    Fig. 8. IP dataset
    SA dataset
    Fig. 9. SA dataset
    PU dataset
    Fig. 10. PU dataset
    Houston dataset
    Fig. 11. Houston dataset
    The visualization result of each algorithm on the IP dataset
    Fig. 12. The visualization result of each algorithm on the IP dataset
    The visualization result of each algorithm on the SA dataset
    Fig. 13. The visualization result of each algorithm on the SA dataset
    The visualization result of each algorithm on the PU dataset
    Fig. 14. The visualization result of each algorithm on the PU dataset
    The visualization result of each algorithm on the Houston dataset
    Fig. 15. The visualization result of each algorithm on the Houston dataset
    Sample categorySample nameTraining samplesTest samples
    Total——2 04510 249
    0Alfalfa946
    1Corn-notill2851 428
    2Corn-mintill166830
    3Corn47237
    4Grass-pasture96483
    5Grass-trees146730
    6Grass-pasture-mowed528
    7Hay-windrowed95478
    8Oats420
    9Soybean-notill194972
    10Soybean-mintill4912 455
    11Soybean-clean118593
    12Wheat41205
    13Woods2531 265
    14Buildings-Grass-Trees-Drives77386
    15Stone-Steel-Towers1893
    Table 1. The number of training and testing samples on IP dataset
    Sample categorySample nameTraining samplesTest samples
    Total——1 07654 129
    0Brocoli_green_weeds_1402 009
    1Brocoli_green_weeds_2743 726
    2Fallow391 976
    3Fallow_rough_plow271 394
    4Fallow_smooth532 678
    5Stubble793 959
    6Celery713 579
    7Grapes_untrained22511 271
    8Soil_vinyard_develop1246 203
    9Corn_senesced_green_weeds653 278
    10Lettuce_romaine_4wk211 068
    11Lettuce_romaine_5wk381 927
    12Lettuce_romaine_6wk18916
    13Lettuce_romaine_7wk211 070
    14Vinyard_untrained1457 268
    15Vinyard_vertical_trellis361 807
    Table 2. The number of training and testing samples on SA dataset
    Sample categorySample nameTraining samplesTest samples
    Total——42342 776
    0Asphalt666 631
    1Meadows18618 649
    2Gravel202 099
    3Trees303 064
    4Painted metal sheets131 345
    5Bare Soil505 029
    6Bitumen131 330
    7Self-Blocking Bricks363 682
    8Shadows9947
    Table 3. The number of training and testing samples on PU dataset
    Sample categorySample nameTraining samplesTest samples
    Total——2 83212 197
    0Healthy Grass1981 053
    1Stressed Grass1901 064
    2Synthetic Grass192505
    3Trees1881 056
    4Soil1861 056
    5Water182143
    6Residential1961 072
    7Commercial1911 053
    8Road1931 059
    9Highway1911 036
    10Railway1811 054
    11Parking Lot 11921 041
    12Parking Lot 2184285
    13Tennis Court181247
    14Running Track187473
    Table 4. The number of training and testing samples on Houston dataset
    SizeIPSAPUHouston
    9×999.5798.2398.2081.04
    11×1199.6999.0298.4685.35
    13×1399.7999.6999.0985.75
    15×1599.5099.6598.8785.78
    17×1799.5199.6899.0985.80
    19×1999.3899.7198.9584.16
    Table 5. The overall accuracy of the different size of the patch on the four datasets
    NetworkIPSAPUHouston
    Basic network97.8998.2198.3183.06
    Spectral attention network99.0298.7498.5484.91
    Spectral-spatial attention residual network99.7999.6999.0985.75
    Table 6. The overall accuracy of the different network on the four datasets
    IP dataset scale5%10%15%20%
    2D CNN65.4971.1880.1782.85
    3D CNN73.6184.2090.7993.23
    HybirdSN88.9195.4498.1299.49
    RIAN87.6593.8796.7597.82
    SSFTT94.9898.1999.3099.45
    SSARN96.0998.5699.4399.79
    Table 7. The overall accuracy of the different network with different training ratios on the IP datasets
    SA dataset scale0.5%1%1.5%2%
    2D CNN71.9287.3388.1288.88
    3D CNN80.0888.6490.8092.45
    HybirdSN93.2795.5598.1798.44
    RIAN91.8896.3796.7097.18
    SSFTT94.7296.3197.2298.70
    SSARN95.0297.8998.7199.69
    Table 8. The overall accuracy of the different network with different training ratios on the IP datasets
    PU dataset scale0.3%0.5%0.7%1%
    2D CNN76.1382.9284.8689.22
    3D CNN76.9482.2185.1086.24
    HybirdSN85.0693.0394.8797.63
    RIAN76.8289.9891.7494.03
    SSFTT86.9994.7896.6597.24
    SSARN93.9397.4698.1599.09
    Table 9. The overall accuracy of the different network with different training ratios on the IP datasets
    Sample category2D CNN3D CNNHybridSNRIANSSFTTSSARN
    043.4884.78100.0095.6295.65100.00
    175.2891.8199.7296.2999.9399.86
    274.2288.6799.7696.6399.4099.28
    359.9291.1494.9494.9497.89100.00
    493.1794.6298.1495.0399.38100.00
    598.0899.45100.0099.4599.45100.00
    657.1460.7196.4392.86100.00100.00
    793.31100.00100.0099.79100.00100.00
    850.0095.00100.0095.00100.00100.00
    976.9590.4398.6697.4899.6999.38
    1085.1793.3699.7198.4599.0299.76
    1162.5682.9799.3396.4698.8299.83
    1299.02100.00100.0098.5499.51100.00
    1395.0297.15100.0099.84100.00100.00
    1480.8396.37100.0097.41100.00100.00
    1578.4993.55100.0098.9298.9298.92
    AA76.4291.2599.1797.0799.2399.81
    OA82.8593.2399.4997.8299.4599.79
    Kappa80.3692.2799.4297.5299.3899.76
    Table 10. The category accuracy,OA,AA and Kappa of the different algorithms on IP dataset
    Sample category2D CNN3D CNNHybridSNRIANSSFTTSSARN
    098.4196.67100.0099.85100.00100.00
    197.2699.60100.0099.76100.00100.00
    294.3399.44100.0099.5499.80100.00
    398.5798.4299.5098.2898.1498.64
    497.8797.8098.0298.4797.4299.96
    598.36100.00100.0099.92100.00100.00
    697.2697.09100.0099.89100.0099.97
    779.386.8696.7392.9197.3299.35
    899.1997.11100.0098.9499.90100.00
    979.4492.0498.8799.1896.7198.93
    1092.1391.67100.0096.4498.6099.81
    1199.9599.4899.9099.9599.90100.00
    1295.6399.7899.5698.91100.00100.00
    1395.7097.0198.8897.6699.6399.63
    1470.2077.4595.1894.3097.8499.52
    1593.9793.6999.4597.1299.28100.00
    AA92.9695.2699.1398.2099.0399.74
    OA88.8892.4598.4497.1898.7099.69
    Kappa87.6191.5998.2696.8698.5599.65
    Table 11. The category accuracy,OA,AA and Kappa of the different algorithms on SA dataset
    Sample category2D CNN3D CNNHybridSNRIANSSFTTSSARN
    092.3483.4097.6293.8396.00100.00
    197.4299.3699.8398.0599.8499.98
    259.2748.2683.9967.3792.8598.71
    373.6090.5797.5595.7297.4994.13
    498.4484.54100.0099.85100.0099.85
    576.9166.8197.9592.5698.11100.00
    679.8570.2397.8975.7981.8894.81
    787.7874.7193.7096.4492.1897.58
    893.7791.1394.7285.6496.3097.99
    AA84.3778.7895.9289.4794.9698.12
    OA89.2286.2497.6394.0397.2499.09
    Kappa85.4781.4696.8592.0896.3498.79
    Table 12. Category accuracy,OA,AA and Kappa of the different algorithms on PU dataset
    Sample category2D CNN3D CNNHybridSNRIANSSFTTSSARN
    082.7282.5372.9381.2982.5382.62
    184.2182.0581.9658.5584.7785.15
    297.8292.2885.1588.3285.94100.00
    391.2991.5772.2580.2192.9991.67
    498.2099.2498.4983.6299.72100.00
    594.4192.3177.6260.8494.4195.80
    675.7575.1966.3366.5183.8686.38
    766.9556.5173.3145.1165.4388.60
    873.4766.9550.0558.8374.4181.87
    944.7950.77100.0020.1751.7447.88
    1078.1873.9186.3435.4874.3881.50
    1177.9172.3380.3151.3078.4893.47
    1284.2181.7565.6145.6189.8385.26
    1398.7996.76100.0076.5299.19100.00
    14100.0082.45100.0086.6894.93100.00
    AA83.2579.7780.6962.6083.5188.01
    OA79.9276.9579.4160.6680.6685.75
    Kappa78.3775.1877.6457.5879.1084.57
    Table 13. The category accuracy,OA,AA and Kappa of the different algorithms on Houston dataset
    Feifei WANG, Huijie ZHAO, Na LI, Siyuan LI, Yu CAI. Spectral-spatial Attention Residual Networks for Hyperspectral Image Classification[J]. Acta Photonica Sinica, 2023, 52(12): 1210002
    Download Citation