Fig. 1. Flow chart of spectral-spatial attention residual network
Fig. 2. The structure of the central region spectral attention mechanism
Fig. 3. The structure of the spatial attention mechanism
Fig. 4. The structure of the residual network
Fig. 5. The spectral residual network module
Fig. 6. The spatial residual network module
Fig. 7. The flow chart of SSARN with IP dataset as an example
Fig. 8. IP dataset
Fig. 9. SA dataset
Fig. 10. PU dataset
Fig. 11. Houston dataset
Fig. 12. The visualization result of each algorithm on the IP dataset
Fig. 13. The visualization result of each algorithm on the SA dataset
Fig. 14. The visualization result of each algorithm on the PU dataset
Fig. 15. The visualization result of each algorithm on the Houston dataset
Sample category | Sample name | Training samples | Test samples |
---|
Total | —— | 2 045 | 10 249 | 0 | Alfalfa | 9 | 46 | 1 | Corn-notill | 285 | 1 428 | 2 | Corn-mintill | 166 | 830 | 3 | Corn | 47 | 237 | 4 | Grass-pasture | 96 | 483 | 5 | Grass-trees | 146 | 730 | 6 | Grass-pasture-mowed | 5 | 28 | 7 | Hay-windrowed | 95 | 478 | 8 | Oats | 4 | 20 | 9 | Soybean-notill | 194 | 972 | 10 | Soybean-mintill | 491 | 2 455 | 11 | Soybean-clean | 118 | 593 | 12 | Wheat | 41 | 205 | 13 | Woods | 253 | 1 265 | 14 | Buildings-Grass-Trees-Drives | 77 | 386 | 15 | Stone-Steel-Towers | 18 | 93 |
|
Table 1. The number of training and testing samples on IP dataset
Sample category | Sample name | Training samples | Test samples |
---|
Total | —— | 1 076 | 54 129 | 0 | Brocoli_green_weeds_1 | 40 | 2 009 | 1 | Brocoli_green_weeds_2 | 74 | 3 726 | 2 | Fallow | 39 | 1 976 | 3 | Fallow_rough_plow | 27 | 1 394 | 4 | Fallow_smooth | 53 | 2 678 | 5 | Stubble | 79 | 3 959 | 6 | Celery | 71 | 3 579 | 7 | Grapes_untrained | 225 | 11 271 | 8 | Soil_vinyard_develop | 124 | 6 203 | 9 | Corn_senesced_green_weeds | 65 | 3 278 | 10 | Lettuce_romaine_4wk | 21 | 1 068 | 11 | Lettuce_romaine_5wk | 38 | 1 927 | 12 | Lettuce_romaine_6wk | 18 | 916 | 13 | Lettuce_romaine_7wk | 21 | 1 070 | 14 | Vinyard_untrained | 145 | 7 268 | 15 | Vinyard_vertical_trellis | 36 | 1 807 |
|
Table 2. The number of training and testing samples on SA dataset
Sample category | Sample name | Training samples | Test samples |
---|
Total | —— | 423 | 42 776 | 0 | Asphalt | 66 | 6 631 | 1 | Meadows | 186 | 18 649 | 2 | Gravel | 20 | 2 099 | 3 | Trees | 30 | 3 064 | 4 | Painted metal sheets | 13 | 1 345 | 5 | Bare Soil | 50 | 5 029 | 6 | Bitumen | 13 | 1 330 | 7 | Self-Blocking Bricks | 36 | 3 682 | 8 | Shadows | 9 | 947 |
|
Table 3. The number of training and testing samples on PU dataset
Sample category | Sample name | Training samples | Test samples |
---|
Total | —— | 2 832 | 12 197 | 0 | Healthy Grass | 198 | 1 053 | 1 | Stressed Grass | 190 | 1 064 | 2 | Synthetic Grass | 192 | 505 | 3 | Trees | 188 | 1 056 | 4 | Soil | 186 | 1 056 | 5 | Water | 182 | 143 | 6 | Residential | 196 | 1 072 | 7 | Commercial | 191 | 1 053 | 8 | Road | 193 | 1 059 | 9 | Highway | 191 | 1 036 | 10 | Railway | 181 | 1 054 | 11 | Parking Lot 1 | 192 | 1 041 | 12 | Parking Lot 2 | 184 | 285 | 13 | Tennis Court | 181 | 247 | 14 | Running Track | 187 | 473 |
|
Table 4. The number of training and testing samples on Houston dataset
Size | IP | SA | PU | Houston |
---|
9×9 | 99.57 | 98.23 | 98.20 | 81.04 | 11×11 | 99.69 | 99.02 | 98.46 | 85.35 | 13×13 | 99.79 | 99.69 | 99.09 | 85.75 | 15×15 | 99.50 | 99.65 | 98.87 | 85.78 | 17×17 | 99.51 | 99.68 | 99.09 | 85.80 | 19×19 | 99.38 | 99.71 | 98.95 | 84.16 |
|
Table 5. The overall accuracy of the different size of the patch on the four datasets
Network | IP | SA | PU | Houston |
---|
Basic network | 97.89 | 98.21 | 98.31 | 83.06 | Spectral attention network | 99.02 | 98.74 | 98.54 | 84.91 | Spectral-spatial attention residual network | 99.79 | 99.69 | 99.09 | 85.75 |
|
Table 6. The overall accuracy of the different network on the four datasets
IP dataset scale | 5% | 10% | 15% | 20% |
---|
2D CNN | 65.49 | 71.18 | 80.17 | 82.85 | 3D CNN | 73.61 | 84.20 | 90.79 | 93.23 | HybirdSN | 88.91 | 95.44 | 98.12 | 99.49 | RIAN | 87.65 | 93.87 | 96.75 | 97.82 | SSFTT | 94.98 | 98.19 | 99.30 | 99.45 | SSARN | 96.09 | 98.56 | 99.43 | 99.79 |
|
Table 7. The overall accuracy of the different network with different training ratios on the IP datasets
SA dataset scale | 0.5% | 1% | 1.5% | 2% |
---|
2D CNN | 71.92 | 87.33 | 88.12 | 88.88 | 3D CNN | 80.08 | 88.64 | 90.80 | 92.45 | HybirdSN | 93.27 | 95.55 | 98.17 | 98.44 | RIAN | 91.88 | 96.37 | 96.70 | 97.18 | SSFTT | 94.72 | 96.31 | 97.22 | 98.70 | SSARN | 95.02 | 97.89 | 98.71 | 99.69 |
|
Table 8. The overall accuracy of the different network with different training ratios on the IP datasets
PU dataset scale | 0.3% | 0.5% | 0.7% | 1% |
---|
2D CNN | 76.13 | 82.92 | 84.86 | 89.22 | 3D CNN | 76.94 | 82.21 | 85.10 | 86.24 | HybirdSN | 85.06 | 93.03 | 94.87 | 97.63 | RIAN | 76.82 | 89.98 | 91.74 | 94.03 | SSFTT | 86.99 | 94.78 | 96.65 | 97.24 | SSARN | 93.93 | 97.46 | 98.15 | 99.09 |
|
Table 9. The overall accuracy of the different network with different training ratios on the IP datasets
Sample category | 2D CNN | 3D CNN | HybridSN | RIAN | SSFTT | SSARN |
---|
0 | 43.48 | 84.78 | 100.00 | 95.62 | 95.65 | 100.00 | 1 | 75.28 | 91.81 | 99.72 | 96.29 | 99.93 | 99.86 | 2 | 74.22 | 88.67 | 99.76 | 96.63 | 99.40 | 99.28 | 3 | 59.92 | 91.14 | 94.94 | 94.94 | 97.89 | 100.00 | 4 | 93.17 | 94.62 | 98.14 | 95.03 | 99.38 | 100.00 | 5 | 98.08 | 99.45 | 100.00 | 99.45 | 99.45 | 100.00 | 6 | 57.14 | 60.71 | 96.43 | 92.86 | 100.00 | 100.00 | 7 | 93.31 | 100.00 | 100.00 | 99.79 | 100.00 | 100.00 | 8 | 50.00 | 95.00 | 100.00 | 95.00 | 100.00 | 100.00 | 9 | 76.95 | 90.43 | 98.66 | 97.48 | 99.69 | 99.38 | 10 | 85.17 | 93.36 | 99.71 | 98.45 | 99.02 | 99.76 | 11 | 62.56 | 82.97 | 99.33 | 96.46 | 98.82 | 99.83 | 12 | 99.02 | 100.00 | 100.00 | 98.54 | 99.51 | 100.00 | 13 | 95.02 | 97.15 | 100.00 | 99.84 | 100.00 | 100.00 | 14 | 80.83 | 96.37 | 100.00 | 97.41 | 100.00 | 100.00 | 15 | 78.49 | 93.55 | 100.00 | 98.92 | 98.92 | 98.92 | AA | 76.42 | 91.25 | 99.17 | 97.07 | 99.23 | 99.81 | OA | 82.85 | 93.23 | 99.49 | 97.82 | 99.45 | 99.79 | Kappa | 80.36 | 92.27 | 99.42 | 97.52 | 99.38 | 99.76 |
|
Table 10. The category accuracy,OA,AA and Kappa of the different algorithms on IP dataset
Sample category | 2D CNN | 3D CNN | HybridSN | RIAN | SSFTT | SSARN |
---|
0 | 98.41 | 96.67 | 100.00 | 99.85 | 100.00 | 100.00 | 1 | 97.26 | 99.60 | 100.00 | 99.76 | 100.00 | 100.00 | 2 | 94.33 | 99.44 | 100.00 | 99.54 | 99.80 | 100.00 | 3 | 98.57 | 98.42 | 99.50 | 98.28 | 98.14 | 98.64 | 4 | 97.87 | 97.80 | 98.02 | 98.47 | 97.42 | 99.96 | 5 | 98.36 | 100.00 | 100.00 | 99.92 | 100.00 | 100.00 | 6 | 97.26 | 97.09 | 100.00 | 99.89 | 100.00 | 99.97 | 7 | 79.3 | 86.86 | 96.73 | 92.91 | 97.32 | 99.35 | 8 | 99.19 | 97.11 | 100.00 | 98.94 | 99.90 | 100.00 | 9 | 79.44 | 92.04 | 98.87 | 99.18 | 96.71 | 98.93 | 10 | 92.13 | 91.67 | 100.00 | 96.44 | 98.60 | 99.81 | 11 | 99.95 | 99.48 | 99.90 | 99.95 | 99.90 | 100.00 | 12 | 95.63 | 99.78 | 99.56 | 98.91 | 100.00 | 100.00 | 13 | 95.70 | 97.01 | 98.88 | 97.66 | 99.63 | 99.63 | 14 | 70.20 | 77.45 | 95.18 | 94.30 | 97.84 | 99.52 | 15 | 93.97 | 93.69 | 99.45 | 97.12 | 99.28 | 100.00 | AA | 92.96 | 95.26 | 99.13 | 98.20 | 99.03 | 99.74 | OA | 88.88 | 92.45 | 98.44 | 97.18 | 98.70 | 99.69 | Kappa | 87.61 | 91.59 | 98.26 | 96.86 | 98.55 | 99.65 |
|
Table 11. The category accuracy,OA,AA and Kappa of the different algorithms on SA dataset
Sample category | 2D CNN | 3D CNN | HybridSN | RIAN | SSFTT | SSARN |
---|
0 | 92.34 | 83.40 | 97.62 | 93.83 | 96.00 | 100.00 | 1 | 97.42 | 99.36 | 99.83 | 98.05 | 99.84 | 99.98 | 2 | 59.27 | 48.26 | 83.99 | 67.37 | 92.85 | 98.71 | 3 | 73.60 | 90.57 | 97.55 | 95.72 | 97.49 | 94.13 | 4 | 98.44 | 84.54 | 100.00 | 99.85 | 100.00 | 99.85 | 5 | 76.91 | 66.81 | 97.95 | 92.56 | 98.11 | 100.00 | 6 | 79.85 | 70.23 | 97.89 | 75.79 | 81.88 | 94.81 | 7 | 87.78 | 74.71 | 93.70 | 96.44 | 92.18 | 97.58 | 8 | 93.77 | 91.13 | 94.72 | 85.64 | 96.30 | 97.99 | AA | 84.37 | 78.78 | 95.92 | 89.47 | 94.96 | 98.12 | OA | 89.22 | 86.24 | 97.63 | 94.03 | 97.24 | 99.09 | Kappa | 85.47 | 81.46 | 96.85 | 92.08 | 96.34 | 98.79 |
|
Table 12. Category accuracy,OA,AA and Kappa of the different algorithms on PU dataset
Sample category | 2D CNN | 3D CNN | HybridSN | RIAN | SSFTT | SSARN |
---|
0 | 82.72 | 82.53 | 72.93 | 81.29 | 82.53 | 82.62 | 1 | 84.21 | 82.05 | 81.96 | 58.55 | 84.77 | 85.15 | 2 | 97.82 | 92.28 | 85.15 | 88.32 | 85.94 | 100.00 | 3 | 91.29 | 91.57 | 72.25 | 80.21 | 92.99 | 91.67 | 4 | 98.20 | 99.24 | 98.49 | 83.62 | 99.72 | 100.00 | 5 | 94.41 | 92.31 | 77.62 | 60.84 | 94.41 | 95.80 | 6 | 75.75 | 75.19 | 66.33 | 66.51 | 83.86 | 86.38 | 7 | 66.95 | 56.51 | 73.31 | 45.11 | 65.43 | 88.60 | 8 | 73.47 | 66.95 | 50.05 | 58.83 | 74.41 | 81.87 | 9 | 44.79 | 50.77 | 100.00 | 20.17 | 51.74 | 47.88 | 10 | 78.18 | 73.91 | 86.34 | 35.48 | 74.38 | 81.50 | 11 | 77.91 | 72.33 | 80.31 | 51.30 | 78.48 | 93.47 | 12 | 84.21 | 81.75 | 65.61 | 45.61 | 89.83 | 85.26 | 13 | 98.79 | 96.76 | 100.00 | 76.52 | 99.19 | 100.00 | 14 | 100.00 | 82.45 | 100.00 | 86.68 | 94.93 | 100.00 | AA | 83.25 | 79.77 | 80.69 | 62.60 | 83.51 | 88.01 | OA | 79.92 | 76.95 | 79.41 | 60.66 | 80.66 | 85.75 | Kappa | 78.37 | 75.18 | 77.64 | 57.58 | 79.10 | 84.57 |
|
Table 13. The category accuracy,OA,AA and Kappa of the different algorithms on Houston dataset