• Chinese Journal of Quantum Electronics
  • Vol. 33, Issue 5, 524 (2016)
Yirong LIU*, Teng HUANG, Shuai JIANG, Yang ZHANG, Xiuqiu PENG, Wei HUANG, and Weijun ZHANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2016.05.002 Cite this Article
    LIU Yirong, HUANG Teng, JIANG Shuai, ZHANG Yang, PENG Xiuqiu, HUANG Wei, ZHANG Weijun. Theoretical investigation of photoelectron and infrared spectroscopy of hydrated oxalate in atmosphere[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 524 Copy Citation Text show less
    References

    [1] Lohmann U, Feichter J. Global indirect aerosol effects: A review[J]. Atmos. Chem. Phys., 2005, 5(3): 715-737.

    [2] Nel A. Air pollution-related illness: Effects of particles[J]. Science, 2005, 308(5723): 804-806.

    [3] Sarigiannis D Α, Karakitsios S P, Kermenidou M V. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities[J]. Sci. Total. Environ., 2015, 524: 319-330.

    [4] Liu M M, Wang D, Zhao Y, et al. Effects of outdoor and indoor air pollution on respiratory health of Chinese children from 50 kindergartens[J]. J. Epidemiol., 2013, 23(4): 280-287.

    [5] Gu J, Kraus U, et al. Personal day-time exposure to ultrafine particles in different microenvironments[J]. Int. J. Hyg. Envir. Heal., 2015, 218(2): 188-195.

    [6] Weigel R, Borrmann S, Kazil J, et al. Insitu observations of new particle formation in the tropical upper troposphere: The role of clouds and the nucleation mechanism[J]. Atmos. Chem. Phys., 2011, 11(18): 9983-10010.

    [7] Mirme S, Mirme A, Minikin A, et al. Atmospheric sub-3 nm particles at high altitudes[J]. Atmos. Chem. Phys., 2010, 10(2): 437-451.

    [8] Wang D, Guo H, Cheung K, et al. Observation of nucleation mode particle burst and new particle formation events at an urban site in Hong Kong[J]. Atmos. Environ., 2014, 99: 196-205.

    [9] Westervelt D, Pierce J, Riipinen I, et al. Formation and growth of nucleated particles into cloud condensation nuclei: Model-measurement comparison[J]. Atmos. Chem. Phys., 2013, 13(15): 7645-7663.

    [10] Saxton J, Lewis A, Kettlewell J, et al. Isoprene and monoterpene measurements in a secondary forest in northern Benin[J]. Atmos. Chem. Phys., 2007, 7(15): 4095-4106.

    [11] Schwartz R, Russell L, Sjostedt S, et al. Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products[J]. Atmos. Chem. Phys., 2010, 10(11): 5075-5088.

    [12] Shantz N, Leaitch W, Phinney L, et al. The effect of organic compounds on the growth rate of cloud droplets in marine and forest settings[J]. Atmos. Chem. Phys., 2008, 8(19): 5869-5887.

    [13] Yao X, Zhang L. Sulfate formation in atmospheric ultrafine particles at Canadian inland and coastal rural environments[J]. J. Geophys. Res., 2011, 11(D10): 609-619.

    [14] Crilley L R, Jayaratne E R, Ayoko G A, et al. Observations on the formation, growth and chemical composition of aerosols in an urban environment[J]. Environ. Sci. Technol., 2014, 48(12): 6588-6596.

    [15] Stanier C O, Khlystov A Y, Pandis S N. Nucleation events during the Pittsburgh air quality study: Description and relation to key meteorological, gas phase, and aerosol parameters[J]. Aerosol. Sci. Tech., 2004, 38(1): 253-264.

    [16] Brock C, Cozic J, Bahreini R, et al. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project[J]. Atmos. Chem. Phys., 2011, 11(6): 2423-2453.

    [18] Wen H, Liu Y R, Huang T, et al. Observation of linear to planar structural transition in sulfur-doped gold clusters: AuxS- (x=2~5)[J]. J. Chem. Phys., 2013, 138(17): 174303.

    [19] Yu F, Turco R P. Ultrafine aerosol formation via ion-mediated nucleation[J]. Geophys. Res. Lett., 2000, 27(6): 883-886.

    [20] Wang X B, Yang X, Nicholas J B, et al. Photodetachment of hydrated oxalate dianions in the gas phase, C2O2-4(H2O)n (n=3~40): From solvated clusters to nanodroplet[J]. J. Chem. Phys., 2003, 119(7): 3631-3640.

    [21] Rosas-García V M, del Carmen Sáenz-Tavera I, Rodríguez-Herrera V J, et al. Microsolvation and hydration enthalpies of CaC2O4(H2O)n (n=0~16) and C2O2-4(H2O)n(n=0~14): an ab initio study[J]. J. Mol. Model., 2012, 19(4): 1459-1471.

    [22] Gao B, Liu Z F. First principles study on the solvation and structure of C2O2-4(H2O)n, n=6~12[J]. J. Phys. Chem. A, 2005, 109(40): 9104-9111.

    [23] Weber K H, Morales F J, Tao F M. Theoretical study on the structure and stabilities of molecular clusters of oxalic acid with water[J]. J. Phys. Chem. A, 2012, 11(47): 11601-11617.

    [24] Wales D J, Doye J P. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms[J]. J. Phys. Chem. A, 1997, 101(28): 5111-5116.

    [25] Li Z, Scheraga H A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding[J]. Proc. Natl. Acad. Sci. USA, 1987, 84(19): 6611-6615.

    [26] Delley B. An all-electronnumerical-method for solving the local density functional for polyatomic-molecules[J]. J. Chem. Phys., 1990, 92(1): 508-517.

    CLP Journals

    [1] WANG Yanbing, LIU Yirong. Theoretical Study on Mechanism of Nucleation of Phthalic Acid and Sulfuric Acid[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 372

    [2] ZHAO Feng, FENG Yajuan. Atmospheric physicochemical properties of 2-methylglyceric acid-sulfuric acid/methanesulfonic acid clusters[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 213

    LIU Yirong, HUANG Teng, JIANG Shuai, ZHANG Yang, PENG Xiuqiu, HUANG Wei, ZHANG Weijun. Theoretical investigation of photoelectron and infrared spectroscopy of hydrated oxalate in atmosphere[J]. Chinese Journal of Quantum Electronics, 2016, 33(5): 524
    Download Citation