• Opto-Electronic Engineering
  • Vol. 45, Issue 3, 170489 (2018)
Jiang Wenhan1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2018.170489 Cite this Article
    Jiang Wenhan. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489 Copy Citation Text show less
    References

    [2] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229–236.

    [3] Linnik V P. On the possibility of reducing the influence of atmospheric seeing on the image quality of stars[J]. Optics and Spectroscopy (in Russian), 1957, 3. English translation, 401-402. CO-16 Satellite Conference on Active and Adaptive Optics, ESO Proc. 48, 1993: 535–538.

    [4] Fried D. L. edited Special issue on adaptive optics[J]. JOSA, 1977, 67(3).

    [5] Hardy J W. Active optics: A new technology for the control of light[J]. Proceedings of the IEEE, 1978, 66(6): 651–697.

    [6] Special issue on adaptive optics[J]. Lincoln Laboratory Journal, 1992, 5(1): 170.

    [7] Fried D L. Limiting resolution looking down through the atmosphere[ J]. Journal of the Optical Society of America, 1966, 56(10): 1380–1384.

    [8] Greenwood D P. Bandwidth specification for adaptive optics systems[J]. Journal of the Optical Society of America, 1977, 67(3): 390–393.

    [9] Fried D L. Anisoplanatism in adaptive optics[J]. Journal of the Optical Society of America, 1982, 72(1): 52–61.

    [10] Murphy D V. Atmospheric-turbulence compensation experiments using cooperative beacons[J]. The Lincoln Laboratory Journal, 1992, 5(1): 25–44.

    [11] Murphy D V, Primmerman C A, Zollars B G, et al. Experimental demonstration of atmospheric compensation using multiple synthetic beacons[J]. Optics Letters, 1991, 16(22): 1797–1799.

    [12] Fugate R Q, Fried D L, Ameer G A, et al. Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star[J]. Nature, 1991, 353(6340): 144–146.

    [13] Primmerman C A, Fouche D G. Thermal-blooming compensation: experimental observations using a deformable-mirror system[J]. Applied Optics, 1976, 15(4): 990–995.

    [14] Schonfeld J F. The theory of compensated laser propagation through strong thermal blooming[J]. The Lincoln Laboratory Journal, 1992, 5(1): 131–150.

    [15] Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe[J]. Astronomy and Astrophysics, 1985, 152(2): L29–L31.

    [16] Humphreys R A, Bradley L C, Herrmann J. Sodium-layer synthetic beacons for adaptive optics[J]. The Lincoln Laboratory Journal, 1992, 5(1): 45–66.

    [17] Hardy J W, Lefebvre J E, Koliopoulos C L. Real-time atmospheric compensation[J]. Journal of the Optical Society of America, 1977, 67(3): 360–369.

    [18] Hardy J W. Adaptive Optics for Astronomical Telescopes[M]. Oxford: Oxford University Press, 1998.

    [19] Hardy J W. Twenty years of active and adaptive optics[C]// ICO-16 Satellite Conference on Active and Adaptive Optics, 1993, 48: 29–34.

    [20] Kern P, Merkle F, Gaffard J P, et al. Prototype of an adaptive optical system for astronomical observation[J]. Proceedings of SPIE, 1988, 860: 9–16.

    [21] Merkle F, Rousset G, Kern P Y, et al. First diffraction-limited astronomical images with adaptive optics[J]. Proceedings of SPIE, 1990, 1236: 193–203.

    [22] Roddier F. Curvature sensing and compensation: a new concept in adaptive optics[J]. Applied Optics, 1988, 27(7): 1223–1225.

    [23] Ellerbroek B, Britton M, Dekany R, et al. Adaptive optics for the thirty meter telescope[J]. Proceedings of SPIE, 2005, 5903: 590304.

    [24] Vernin J, Mu oz-Tu ón C, Sarazin M, et al. European extremely large telescope site characterization I: Overview[J]. Publications of the Astronomical Society of the Pacific, 2011, 123(909): 1334–1346.

    [25] GMT Project. Giant magellan telescope conceptual design review[EB/OL]. http://www.gmto.org, 2006.

    [26] Fugate R Q. The starfire optical range 3.5-m adaptive optical telescope[J]. Proceedings of SPIE, 2003, 4837: 934–944.

    [27] Acton D S, Dunn R B. Solar imaging at national solar observatory using a segmented adaptive optics system[J]. Proceedings of SPIE, 1993, 1920: 348–353.

    [28] Jiang W H, Zhang Y D, Rao C H, et al. Progress on adaptive optics of Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Acta Optica Sinica, 2011, 31(9): 900106.

    [30] Jiang W H, Li M G, Tang G M, et al. Adaptive optical image compensation experiments on stellar objects[J]. Optical Engineering, 1995, 34(1): 15–21.

    [31] Rao C H, Jiang W H, Zhang Y D, et al. 61-element adaptive optical system for 1.2 m telescope of Yunnan Observatory[J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 295–302.

    [32] Rao C H, Wei K, Zhang X J, et al. First observations on the 127-element adaptive optical system for 1.8 m telescope[J]. Proceedings of SPIE, 2008, 7654: 76541H.

    [33] Wei K, Bo Y, Xue X H, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[J]. Proceedings of SPIE, 2012, 8447: 84471R .

    [34] Wei K, Li M, Chen S Q, et al. First light for the sodium laser guide star adaptive optics system on the Lijiang 1.8 m telescope[ J]. Research in Astronomy and Astrophysics, 2016, 16(12): 183.

    [35] Jin K, Wei K, Feng L, et al. Photon return on-sky test of pulsed sodium laser guide star with D2b repumping[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(954): 749–756.

    [36] Rao C H, Jiang W H, Fang C, et al. A tilt-correction adaptive optical system for the solar telescope of Nanjing University[J]. Research in Astronomy and Astrophysics, 2003, 3(6): 576–586.

    [37] Rao C H, Zhu L, Rao X J, et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1 m new vacuum solar telescope at Fuxian solar observatory[ J]. The Astrophysical Journal, 2016, 833(2): 210.

    [38] Liu C, Chen M, Chen S Q, et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 2016, 361: 21–24.

    [41] Jiang W H, Huang S F, Ling N, et al. Hill-climbing wavefront correction system for large laser engineering[J]. Proceedings of SPIE, 1989, 965: 266–273.

    [42] Salmon J T, Bliss E S, Byrd J L, et al. An adaptive optics system for solid-state laser systems used in inertial confinement fusion[ R]. Monterey, CA: Office of Scientific & Technical Information Technical Reports LLNL, 1995.

    [43] Liang J Z, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. Journal of the Optical Society of America A, 1997, 14(11): 2884–2892.

    [44] Roorda A, Williams D R. The arrangement of the three cone classes in the living human eye[J]. Nature, 1999, 397(6719): 520–522.

    [45] Ling N, Zhang Y D, Rao X J, et al. A small adaptive optical imaging system for cells of living human retina[J]. Acta Optica Sinica, 2004, 24(9): 1153–1158.

    [46] Shi G H, Dai Y, Wang L, et al. Adaptive optics optical coherence tomography for retina imaging [J]. Chinese Optic Letters, 2008, 6(6): 424–425.

    [47] He Y, Zhang Y D, Lu J, et al. Superresolution in adaptive optics confocal scanning laser ophthalmoscope[J]. Acta Physica Sinica, 2011, 60(3): 034207.

    [48] Liu R, Zhou J W, Zhao H X, et al. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction[J]. Scientific Reports, 2014, 4: 4687.

    [49] Macintosh B A, Graham J R, Palmer D W, et al. The Gemini Planet Imager: from science to design to construction[J]. Proceedings of SPIE, 2008, 7015: 701518.

    [50] Beuzit J L, Feldt M, Dohlen K, et al. A 'Planet Finder' instrument for the VLT[J]. Proceedings of the International Astronomical Union, 2005, 1(C200): 317–322.

    [51] Fusco T, Sauvage J F, Petit C, et al. Final performance and lesson-learned of SAXO, the VLT-SPHERE extreme AO: from early design to on-sky results[J]. Proceedings of SPIE, 2014, 9148: 91481U.

    [52] Macintosh B, Graham J R, Ingraham P, et al. First light of the Gemini Planet imager[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12661–12666.

    [53] Ning Y, Jiang W H, Ling N, et al. Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors[J]. Optics Express, 2007, 15(19): 12030–12038.

    [54] Bifano T G, Perreault J A, Bierden P A. Micromachined deformable mirror for optical wavefront compensation[J]. Proceedings of SPIE, 2000, 4124: 7–15.

    [55] Rooms F, Camet S, Charton J, et al. A new deformable mirror and experimental setup for free-space optical communication[J]. Proceedings of SPIE, 2009, 7199: 71990.

    [56] Love G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J]. Applied Optics, 1997, 36(7): 1517–1524.

    [57] Cai D M, Yao J, JiangW H. Performance of liquid-crystal spatial light modulator using for wave-front correction[J]. Acta Optica Sinica, 2009, 29(2): 285–291.

    [58] Guo Y M, Zhang A A, Fan X L, et al. First on-sky demonstration of the piezoelectric adaptive secondary mirror[J]. Optics Letters, 2016, 41(24): 5712–5715.

    [59] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907–909.

    [60] Yang H Z, Li X Y, Jiang W H. High resolution imaging of phase-distorted extended object using SPGD algorithm and deformable mirror[J]. Proceedings of SPIE, 2007, 6834: 683411.

    [61] Booth M J, Neil M A, Juskaitis R, et al. Adaptive aberration correction in a confocal microscope[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 5788–5792.

    [62] Wang J X, Bai F Z, Ning Y, et al. Wavefront response matrix for closed-loop adaptive optics system based on non-modulation pyramid wavefront sensor[J]. Optics Communications, 2012, 285(12): 2814–2820.

    [63] Wang S Q, Wei K, Zheng W J, et al. First light on an adaptive optics system using a non-modulation pyramid wavefront sensor for a 1.8 m telescope[J]. Chinese Optics Letters, 2016, 14(10): 100101.

    CLP Journals

    [1] Sun Wenhan, Wang Shuai, He Xing, Chen Xiaojun, Xu Bing. Modal wavefront reconstruction to obtain Zernike coefficient with no cross coupling in lateral shearing measurement[J]. Opto-Electronic Engineering, 2019, 46(5): 180273

    [2] Xuanzhe Zhang, Yan Wang, Jiahua Wang, Zaihong Hou, Shaojun Du. Image clarification and point cloud calculation under turbulence by light field camera[J]. Infrared and Laser Engineering, 2020, 49(11): 20200053

    [3] Zhou Xin, Li Xinyang. Wavefront distortion prediction method based on motion estimation[J]. Opto-Electronic Engineering, 2021, 48(10): 210288

    [4] Kong Qingfeng, Wang Shuai, Yang Ping, Lin Haiqi, Liu Yong, Xu Bing. Single-frame far-field wavefront retrieval method based on Walsh function modulation[J]. Opto-Electronic Engineering, 2020, 47(6): 190323

    [5] Kong Qingfeng, Wang Shuai, Yang Ping, Lin Haiqi, Liu Yong, Xu Bing. Single-frame far-field wavefront retrieval method based on Walsh function modulation[J]. Opto-Electronic Engineering, 2020, 47(6): 190323

    [6] Li Xuxu, Li Xinyang, Wang Caixia. Local adaptive threshold segmentation method for subapture spots of Shack-Hartmann sensor[J]. Opto-Electronic Engineering, 2018, 45(10): 170699

    [7] Liu Xin, Li Xinyang, Du Rui. Hysteresis nonlinear modeling and inverse compensation of piezoelectric actuators[J]. Opto-Electronic Engineering, 2019, 46(8): 180328

    [8] Guan Chunlin, Zhang Xiaojun, Deng Jianming, Xue Lixia, Zhang Yaoping, Zhou Hong, Fan Xinlong, Cheng Lin, Fan Junqi, He Gang, Mou Jinbo, Long Guoyun. Deformable mirror technologies at Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Opto-Electronic Engineering, 2020, 47(10): 200337

    [9] Ruan Yong, Xu Tianrong, Yang Tao, Tang Tao. Position-rate control for the time delay control system of tip-tilt mirror[J]. Opto-Electronic Engineering, 2020, 47(12): 200006

    [10] Wang Yuanyuan, He Yi, Wei Lin, Li Linxiao, Yang Jinsheng, Li Xiqi, Zhou Hong, Zhang Yudong. Analysis on fitting capability to human aberrations of bimorph deformable mirrors[J]. Opto-Electronic Engineering, 2018, 45(12): 180103

    Jiang Wenhan. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489
    Download Citation