• Infrared and Laser Engineering
  • Vol. 53, Issue 3, 20230717 (2024)
Jiaxin Ren1, Long Li1,2, Xinyang Li1, Hengxin Yang1..., Yuxiao Ji1 and Chunling Zhang1,2|Show fewer author(s)
Author Affiliations
  • 1Faculty of Science, Xi'an University of Architecture & Technology, Xi'an 710055, China
  • 2Institute for Applied Physics, Xi'an University of Architecture & Technology, Xi'an 710055, China
  • show less
    DOI: 10.3788/IRLA20230717 Cite this Article
    Jiaxin Ren, Long Li, Xinyang Li, Hengxin Yang, Yuxiao Ji, Chunling Zhang. Thermal effect of laser diode end pump square Tm:YAG composite crystal[J]. Infrared and Laser Engineering, 2024, 53(3): 20230717 Copy Citation Text show less
    Cavity structure diagram of pulsed LD end pumped Tm:YAG laser
    Fig. 1. Cavity structure diagram of pulsed LD end pumped Tm:YAG laser
    Structure schematic diagram of square Tm:YAG crystal model and heat sink experimental device . (a) Heat sink experimental device; (b) Single-ended bonded crystal model; (c) Double-ended bonded crystals
    Fig. 2. Structure schematic diagram of square Tm:YAG crystal model and heat sink experimental device . (a) Heat sink experimental device; (b) Single-ended bonded crystal model; (c) Double-ended bonded crystals
    Three-dimensional temperature distribution of square composite Tm:YAG crystal. (a) Longitudinal section of single-ended bonded crystal (y=0); (b) single-ended bonded gain crystal end face (z=c1); (c) Longitudinal section of double-ended bonded crystal (y=0); (d) Double-ended bonded gain crystal end face (z=c1)
    Fig. 3. Three-dimensional temperature distribution of square composite Tm:YAG crystal. (a) Longitudinal section of single-ended bonded crystal (y=0); (b) single-ended bonded gain crystal end face (z=c1); (c) Longitudinal section of double-ended bonded crystal (y=0); (d) Double-ended bonded gain crystal end face (z=c1)
    Temperature profile of single-ended bonded crystal (x=0). (a) \begin{document}$ {c}_{1} $\end{document}=0 mm; (b) \begin{document}$ {c}_{1} $\end{document}=0.2 mm; (c) \begin{document}$ {c}_{1} $\end{document}=0.4 mm; (d) \begin{document}$ {c}_{1} $\end{document}=0.6 mm
    Fig. 4. Temperature profile of single-ended bonded crystal (x=0). (a) Unknown environment 'document'=0 mm; (b) Unknown environment 'document'=0.2 mm; (c) Unknown environment 'document'=0.4 mm; (d) Unknown environment 'document'=0.6 mm
    Temperature profile of double-ended bonded crystal (y=0). (a) c1=0.2 mm; (b) c1=0.4 mm; (c) c1=0.6 mm
    Fig. 5. Temperature profile of double-ended bonded crystal (y=0). (a) c1=0.2 mm; (b) c1=0.4 mm; (c) c1=0.6 mm
    The maximum temperature in the composite crystal varies with the thickness of the gain crystal
    Fig. 6. The maximum temperature in the composite crystal varies with the thickness of the gain crystal
    Stress distribution of YAG/Tm:YAG crystals. (a) Single-ended bonding; (b) Double-ended bonding
    Fig. 7. Stress distribution of YAG/Tm:YAG crystals. (a) Single-ended bonding; (b) Double-ended bonding
    YAG/Tm:YAG crystal side profile stress distribution(x=0). (a) Single-ended bonding; (b) Double-ended bonding
    Fig. 8. YAG/Tm:YAG crystal side profile stress distribution(x=0). (a) Single-ended bonding; (b) Double-ended bonding
    Three-dimensional distribution of thermal deformation of composite crystal (y=0). (a) Single-ended bonding; (b) Double-ended bonding
    Fig. 9. Three-dimensional distribution of thermal deformation of composite crystal (y=0). (a) Single-ended bonding; (b) Double-ended bonding
    Profile profile variable distribution of single-ended bonded Tm:YAG composite crystal (y=0). (a) \begin{document}$ {c}_{1} $\end{document}=0 mm;(b) \begin{document}$ {c}_{1} $\end{document}=0.2 mm;(c) \begin{document}$ {c}_{1} $\end{document}=0.4 mm;(d) c1=0.6 mm
    Fig. 10. Profile profile variable distribution of single-ended bonded Tm:YAG composite crystal (y=0). (a) Unknown environment 'document'=0 mm;(b) Unknown environment 'document'=0.2 mm;(c) Unknown environment 'document'=0.4 mm;(d) c1=0.6 mm
    Double-ended bond Tm:YAG composite crystal profile profile variable distribution (x=0). (a) c1=0.4 mm; (b) c1=0.8 mm; (c) c1=1.2 mm
    Fig. 11. Double-ended bond Tm:YAG composite crystal profile profile variable distribution (x=0). (a) c1=0.4 mm; (b) c1=0.8 mm; (c) c1=1.2 mm
    ParameterValue
    $ \mathrm{D}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{g}\cdot{\mathrm{c}\mathrm{m}}^{-3} $4.56
    $ \mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\;\;\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{W}\cdot {\mathrm{m}}^{-1}\cdot {\mathrm{K}}^{-1} $14
    $ \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{c}\;\;\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{t}/\mathrm{J}\cdot {\mathrm{g}}^{-1}\cdot {\mathrm{K}}^{-1} $0.59
    $ \mathrm{C}\mathrm{o}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}\;\;\mathrm{o}\mathrm{f}\;\;\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\;\;\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}/{\mathrm{K}}^{-1} $8×106
    Initial temperature/K291
    Water cooling temperature/K288.15
    Table 1. Thermal performance of Tm:YAG crystal[16]
    Jiaxin Ren, Long Li, Xinyang Li, Hengxin Yang, Yuxiao Ji, Chunling Zhang. Thermal effect of laser diode end pump square Tm:YAG composite crystal[J]. Infrared and Laser Engineering, 2024, 53(3): 20230717
    Download Citation