• Chinese Journal of Lasers
  • Vol. 51, Issue 3, 0307101 (2024)
Qiyu Bo1, Yuchen Wu1, Siqi Qiu4、5, and Zhiqing Zhang1、2、3、*
Author Affiliations
  • 1Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin, China
  • 3Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 4Diagosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou 515041, Guangdong, China
  • 5Clinical Research Center, Shantou Central Hospital, Shantou 515041, Guangdong, China
  • show less
    DOI: 10.3788/CJL231383 Cite this Article Set citation alerts
    Qiyu Bo, Yuchen Wu, Siqi Qiu, Zhiqing Zhang. Current Progress of Third Harmonic Generation Microscopy in Tumor Diagnosis[J]. Chinese Journal of Lasers, 2024, 51(3): 0307101 Copy Citation Text show less
    References

    [1] Xia C, Dong X, Li H et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chinese Medical Journal, 135, 584-590(2022).

    [2] Stummer W, Tonn J C, Mehdorn H M et al. Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study[J]. Journal of Neurosurgery, 114, 613-623(2011).

    [3] Damadian R. Tumor detection by nuclear magnetic resonance[J]. Science, 171, 1151-1153(1971).

    [4] Rygh O M, Selbekk T, Torp S H et al. Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection[J]. Acta Neurochirurgica, 150, 1033-1042(2008).

    [5] Barone D G, Lawrie T A, Hart M G. Image guided surgery for the resection of brain tumours[J]. Cochrane Database of Systematic Reviews, 2016, 9685(2014).

    [6] Kawashima A, Libshitz H I. Malignant pleural mesothelioma: CT manifestations in 50 cases[J]. American Journal of Roentgenology, 155, 965-969(1990).

    [7] Turkbey B, Pinto P A, Choyke P L. Imaging techniques for prostate cancer: implications for focal therapy[J]. Nature Reviews. Urology, 6, 191-203(2009).

    [8] Zhang Z Q, de Munck J C, Verburg N et al. Quantitative third harmonic generation microscopy for assessment of glioma in human brain tissue[J]. Advanced Science, 6, 1900163(2019).

    [9] King D F, King L A. A brief historical note on staining by hematoxylin and eosin[J]. The American Journal of Dermatopathology, 8, 168(1986).

    [10] Preeti A, Sameer G, Kulranjan S et al. Intra-operative frozen sections: experience at a tertiary care centre[J]. Asian Pacific Journal of Cancer Prevention: APJCP, 17, 5057-5061(2016).

    [11] Wu J L, Ji N, Tsia K. Speed scaling in multiphoton fluorescence microscopy[J]. Nature Photonics, 15, 800-812(2021).

    [12] Krishna R, Colak I. Advances in biomedical applications of Raman microscopy and data processing: a mini review[J]. Analytical Letters, 56, 576-617(2023).

    [13] Plekhanov A A, Gubarkova E V, Sirotkina M A et al. Compression OCT-elastography combined with speckle-contrast analysis as an approach to the morphological assessment of breast cancer tissue[J]. Biomedical Optics Express, 14, 3037-3056(2023).

    [14] Aghigh A, Bancelin S, Rivard M et al. Second harmonic generation microscopy: a powerful tool for bio-imaging[J]. Biophysical Reviews, 15, 43-70(2023).

    [15] Wu W T, Tang S. Harmonic generation and impact of phase matching in multimodal multiphoton microscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 29, 7000309(2023).

    [16] Olivier N, Luengo-Oroz M A, Duloquin L et al. Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy[J]. Science, 329, 967-971(2010).

    [17] Barad Y, Eisenberg H, Horowitz M et al. Nonlinear scanning laser microscopy by third harmonic generation[J]. Applied Physics Letters, 70, 922-924(1997).

    [18] Boppart S A, You S X, Li L H et al. Simultaneous label-free autofluorescence-multiharmonic microscopy and beyond[J]. APL Photonics, 4, 100901(2019).

    [19] You S X, Tu H H, Chaney E J et al. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy[J]. Nature Communications, 9, 2125(2018).

    [20] You S X, Barkalifa R, Chaney E J et al. Label-free visualization and characterization of extracellular vesicles in breast cancer[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 24012-24018(2019).

    [21] Witte S, Negrean A, Lodder J C et al. Label-free live brain imaging and targeted patching with third-harmonic generation microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 5970-5975(2011).

    [22] Zhang Z Q, Kuzmin N V, Groot M L et al. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue[J]. Bioinformatics, 33, 1712-1720(2017).

    [23] Zhang Z Q, Kuzmin N V, Groot M L et al. Quantitative comparison of 3D third harmonic generation and fluorescence microscopy images[J]. Journal of Biophotonics, 11, 201600256(2018).

    [24] Squier J A, Müller M, Brakenhoff G J et al. Third harmonic generation microscopy[J]. Optics Express, 3, 315-324(1998).

    [25] Mahou P, Olivier N, Labroille G et al. Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos[J]. Biomedical Optics Express, 2, 2837-2849(2011).

    [26] Feng S, Winful H G. Physical origin of the Gouy phase shift[J]. Optics Letters, 26, 485-487(2001).

    [27] Lim H. Harmonic generation microscopy 2.0: new tricks empowering intravital imaging for neuroscience[J]. Frontiers in Molecular Biosciences, 6, 99(2019).

    [28] Ward J F, New G H C. Optical third harmonic generation in gases by a focused laser beam[J]. Physical Review, 185, 57-72(1969).

    [29] Tsang T Y F. Optical third-harmonic generation at interfaces[J]. Physical Review A, 52, 4116-4125(1995).

    [30] Cheng J X, Xie X S. Green's function formulation for third-harmonic generation microscopy[J]. Journal of the Optical Society of America B, 19, 1604-1610(2002).

    [31] Carrasco S, Saleh B E A, Teich M C et al. Second- and third-harmonic generation with vector Gaussian beams[J]. Journal of the Optical Society of America B, 23, 2134-2141(2006).

    [32] Olivier N, Beaurepaire E. Third-harmonic generation microscopy with focus-engineered beams: a numerical study[J]. Optics Express, 16, 14703-14715(2008).

    [33] Débarre D, Supatto W, Pena A M et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy[J]. Nature Methods, 3, 47-53(2006).

    [34] van Steenbergen V, Boesmans W, Li Z et al. Molecular understanding of label-free second harmonic imaging of microtubules[J]. Nature Communications, 10, 3530(2019).

    [35] Kut C, Chaichana K L, Xi J F et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography[J]. Science Translational Medicine, 7, 292ra100(2015).

    [36] Liu F X, Zhang L H, Huang X. Application of Raman spectroscopy in cancer diagnosis[J]. Laser & Optoelectronics Progress, 59, 0617016(2022).

    [37] Freudiger C W, Min W, Saar B G et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 322, 1857-1861(2008).

    [38] Orringer D A, Pandian B, Niknafs Y S et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy[J]. Nature Biomedical Engineering, 1, 27(2017).

    [39] Kuzmin N V, Wesseling P, Hamer P C et al. Third harmonic generation imaging for fast, label-free pathology of human brain tumors[J]. Biomedical Optics Express, 7, 1889-1904(2016).

    [40] Zhang Z Q, Groot M L, de Munck J C. Tensor regularized total variation for denoising of third harmonic generation images of brain tumors[J]. Journal of Biophotonics, 12, e201800129(2019).

    [41] Vajpeyi R. WHO classification of tumours: pathology and genetics of tumours of the breast and female genital organs[J]. Journal of Clinical Pathology, 58, 671-672(2005).

    [42] de Mascarel I, MacGrogan G, Mathoulin-Pélissier S et al. Breast ductal carcinoma in situ with microinvasion: a definition supported by a long-term study of 1248 serially sectioned ductal carcinomas[J]. Cancer, 94, 2134-2142(2002).

    [43] Allred D C. Ductal carcinoma in situ: terminology, classification, and natural history[J]. JNCI Monographs, 2010, 134-138(2010).

    [44] Chen Z, Guo W H, Kang D Y et al. Label-free identification of early stages of breast ductal carcinoma via multiphoton microscopy[J]. Scanning, 2020, 9670514(2020).

    [45] van Huizen L M G, Kuzmin N V, Barbé E et al. Second and third harmonic generation microscopy visualizes key structural components in fresh unprocessed healthy human breast tissue[J]. Journal of Biophotonics, 12, e201800297(2019).

    [46] You S, Chaney E J, Tu H et al. Label-free deep profiling of the tumor microenvironment[J]. Cancer Research, 81, 2534-2544(2021).

    [47] You S X, Sun Y, Chaney E J et al. Slide-free virtual histochemistry (part I): development via nonlinear optics[J]. Biomedical Optics Express, 9, 5240-5252(2018).

    [48] You S X, Sun Y, Chaney E J et al. Slide-free virtual histochemistry (part II): detection of field cancerization[J]. Biomedical Optics Express, 9, 5253-5268(2018).

    [49] Yang L X, Park J, Chaney E J et al. Label-free multimodal nonlinear optical imaging of needle biopsy cores for intraoperative cancer diagnosis[J]. Journal of Biomedical Optics, 27, 056504(2022).

    [50] Jain M, Narula N, Aggarwal A et al. Multiphoton microscopy: a potential "optical biopsy" tool for real-time evaluation of lung tumors without the need for exogenous contrast agents[J]. Archives of Pathology Laboratory Medicine, 138, 1037-1047(2014).

    [51] van Huizen L M G, Radonic T, van Mourik F et al. Compact portable multiphoton microscopy reveals histopathological hallmarks of unprocessed lung tumor tissue in real time[J]. Translational Biophotonics, 2, e202000009(2020).

    [52] Kaldawy A, Segev Y, Lavie O et al. Low-grade serous ovarian cancer: a review[J]. Gynecologic Oncology, 143, 433-438(2016).

    [53] Williams R M, Flesken-Nikitin A, Ellenson L H et al. Strategies for high-resolution imaging of epithelial ovarian cancer by laparoscopic nonlinear microscopy[J]. Translational Oncology, 3, 181-194(2010).

    [54] Adur J, Pelegati V B, Costa L F L et al. Recognition of serous ovarian tumors in human samples by multimodal nonlinear optical microscopy[J]. Journal of Biomedical Optics, 16, 096017(2011).

    [55] Adur J, Pelegati V B, de Thomaz A A et al. Optical biomarkers of serous and mucinous human ovarian tumor assessed with nonlinear optics microscopies[J]. PLoS One, 7, e47007(2012).

    [56] Pouli D, Thieu H T, Genega E M et al. Label-free, high-resolution optical metabolic imaging of human cervical precancers reveals potential for intraepithelial neoplasia diagnosis[J]. Cell Reports Medicine, 1, 100017(2020).

    [57] Urabe F, Kimura T, Ito K et al. Urinary extracellular vesicles: a rising star in bladder cancer management[J]. Translational Andrology and Urology, 10, 1878-1889(2021).

    [58] Jaena P, Rebecca L K, Marina M et al. Label-free optical redox ratio from urinary extracellular vesicles as a screening biomarker for bladder cancer[J]. American Journal of Cancer Research, 12, 2068-2083(2022).

    [59] Kok S D, Schaap P M R, van Dommelen L et al. Compact portable higher harmonic generation microscopy for the real time assessment of unprocessed thyroid tissue[J]. Journal of Biophotonics, 202300079(2023).

    [60] Sun Y, You S X, Du X X et al. Real-time three-dimensional histology-like imaging by label-free nonlinear optical microscopy[J]. Quantitative Imaging in Medicine and Surgery, 10, 2177-2190(2020).

    [61] Llewellyn M E, Barretto R P J, Delp S L et al. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans[J]. Nature, 454, 784-788(2008).

    [62] Jung J C, Schnitzer M J. Multiphoton endoscopy[J]. Optics Letters, 28, 902-904(2003).

    [63] Schenke-Layland K, Riemann I, Damour O et al. Two-photon microscopes and in vivo multiphoton tomographs: powerful diagnostic tools for tissue engineering and drug delivery[J]. Advanced Drug Delivery Reviews, 58, 878-896(2006).

    [64] König K. Clinical multiphoton tomography[J]. Journal of Biophotonics, 1, 13-23(2008).

    [65] Dimitrow E, Ziemer M, Koehler M J et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma[J]. Journal of Investigative Dermatology, 129, 1752-1758(2009).

    [66] Weinigel M, Breunig H G, Uchugonova A et al. Multipurpose nonlinear optical imaging system for in vivo and ex vivo multimodal histology[J]. Journal of Medical Imaging, 2, 016003(2015).

    [67] Liang W X, Hall G, Messerschmidt B et al. Nonlinear optical endomicroscopy for label-free functional histology in vivo[J]. Light: Science & Applications, 6, e17082(2017).

    [68] Li A, Hall G, Chen D F et al. A biopsy-needle compatible varifocal multiphoton rigid probe for depth-resolved optical biopsy[J]. Journal of Biophotonics, 12, 201800229(2019).

    [69] Liang Y M, Yang Z H, Shang J W et al. Imaging technologies for oral cancer screening and diagnosis and their development trends[J]. Chinese Journal of Lasers, 50, 1507101(2023).

    [70] Gunalan A, Mattos L S. Towards OCT-guided endoscopic laser surgery: a review[J]. Diagnostics, 13, 677(2023).

    [71] Tearney G J, Brezinski M E, Fujimoto J G et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography[J]. Optics Letters, 21, 543-545(1996).

    [72] Xie T Q, Mukai D, Guo S G et al. Fiber-optic-bundle-based optical coherence tomography[J]. Optics Letters, 30, 1803-1805(2005).

    [73] Benboujja F, Garcia J A, Beaudette K et al. Intraoperative imaging of pediatric vocal fold lesions using optical coherence tomography[J]. Journal of Biomedical Optics, 21, 016007(2016).

    [74] Kim K H, Park B H, Maguluri G N et al. Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography[J]. Optics Express, 15, 18130-18140(2007).

    [75] Lombardini A, Mytskaniuk V, Sivankutty S et al. High-resolution multimodal flexible coherent Raman endoscope[J]. Light: Science & Applications, 7, 10(2018).

    [76] Shen B L, Liu S W, Li Y P et al. Deep learning autofluorescence-harmonic microscopy[J]. Light: Science & Applications, 11, 76(2022).

    [77] Choe K, Hontani Y, Wang T Y et al. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes[J]. Nature Immunology, 23, 330-340(2022).

    [78] Wang T Y, Ouzounov D G, Wu C Y et al. Three-photon imaging of mouse brain structure and function through the intact skull[J]. Nature Methods, 15, 789-792(2018).

    Qiyu Bo, Yuchen Wu, Siqi Qiu, Zhiqing Zhang. Current Progress of Third Harmonic Generation Microscopy in Tumor Diagnosis[J]. Chinese Journal of Lasers, 2024, 51(3): 0307101
    Download Citation