[1] T. Tsunooka et al. Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram. Soc., 23, 2573(2003).
[2] C. Zhang et al. Structure-dependent microwave dielectric properties and middle temperature sintering of forsterite (Mg1-xNix)2 SiO4 ceramics. J. Am. Ceram. Soc., 98, 702(2015).
[3] M. K. Zhou et al. Effects of MgO doping on microwave dielectric properties of yttrium aluminum garnet ceramics. J. Alloys Compd., 858, 158139(2021).
[4] S. Niijima et al. Effects of the crystal phase and microstructure of pottery bodies on the transmission characteristics of terahertz waves. J. Asian Ceram. Soc., 9, 443(2021).
[5] Y. P. Guo, H. Ohsato, K. I. Kakimoto. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc., 26, 1827(2006).
[6] Z. Shunhua et al. Study on sintering process of MgO ceramics. J. Intraocular Lens., 39, 455(2010).
[7] K. X. Song, X. M. Chen, X. C. Fan. Effects of Mg/Si ratio on microwave dielectric characteristics of forsterite ceramics. J. Am. Ceram. Soc., 90, 1808(2007).
[8] K. X. Song, X. M. Chen, C. W. Zheng. Microwave dielectric characteristics of ceramics in Mg2SiO4-Zn2SiO4 system. Ceram. Int., 34, 917(2008).
[9] S. H. Yoon et al. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc., 26, 2051(2006).
[10] S. George, M. T. Sebastian. Microwave dielectric properties of novel temperature stable high Q Li2Mg1-xZnxTi3O8 and Li2A1-xCaxTi3O8 (A=Mg, Zn) ceramics. J. Eur. Ceram. Soc., 30, 2585(2010).
[11] G. Wang et al. Correlation between crystal structure and modified microwave dielectric characteristics of Cu2 substituted Li3Mg2NbO6 ceramics. Ceram. Int., 45, 10170(2019).
[12] A. Belous et al. Microwave composite dielectrics based on magnesium titanates. J. Eur. Ceram. Soc., 27, 2963(2007).
[13] X. D. Zhu, F. T. Kong, X. S. Ma. Effects of LiF on sintering behavior and properties of CaO-B2O3-SiO2 dielectric ceramics obtained by solid-state reaction. Ceram. Int., 44, 20006(2018).
[14] Y. M. Lai et al. Temperature stability and high-Qf of low temperature firing Mg2SiO4-Li2TiO3 microwave dielectric ceramics. Ceram. Int., 43, 16167(2017).
[15] Y. K. Yang et al. Microwave dielectric properties of ultra-low loss Li2Mg4Zr0.95(Mg1/3Ta2/3)0.05O7 ceramics sintered at low temperature by LiF addition. J. Alloys Compd., 786, 867(2019).
[16] Y. M. Lai et al. Correlation between structure and microwave dielectric properties of low-temperature-fired Mg2SiO4 ceramics. Mater. Res. Bull., 99, 496(2018).
[17] P. Zhang et al. Effects of LiF on sintering characteristics and dielectric properties of low-loss SrCuSi4O10 ceramics for LTCC applications. Mater. Chem. Phys., 222, 246(2019).
[18] R. German, P. Suri, S. Park. Review: Liquid phase sintering. J. Mater. Sci., 44, 1(2009).
[19] X. Q. Song et al. Ultra-low fired fluoride composite microwave dielectric ceramics and their application for BaCuSi2O6-based LTCC. J. Am. Ceram. Soc., 103, 1140(2020).