• Laser & Optoelectronics Progress
  • Vol. 55, Issue 4, 040401 (2018)
Rui Ge1, Wen Shen1, Chao Liu1, Zhouping Su1, Huaxin Zhu1, Dayu Li1, Xinghai Lu1, Quanquan Mu1, Zhaoliang Cao1, Li Xuan1, and Lifa Hu1
Author Affiliations
  • 1 Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
  • 1 State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • show less
    DOI: 10.3788/LOP55.040401 Cite this Article Set citation alerts
    Rui Ge, Wen Shen, Chao Liu, Zhouping Su, Huaxin Zhu, Dayu Li, Xinghai Lu, Quanquan Mu, Zhaoliang Cao, Li Xuan, Lifa Hu. Distance-Power Index Weighted Centroid Detection Algorithm for Shack-Hartmann Wavefront Sensors[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040401 Copy Citation Text show less
    References

    [1] Li J W, Chen W B. Bandwidth of adaptive optics system in satellite-ground coherent laser communication[J]. Chinese Journal of Lasers, 43, 0806003(2016).

    [2] Chen B, Yang J, Li X Y et al. Comparison of two close-loop control methods in adaptive optics with wavefront curvature sensing[J]. Acta Optica Sinica, 36, 0301003(2016).

    [3] Xu Y, Man T L, Wan Y H. Research progress on adaptive wide-field microscopic imaging technology with high resolution[J]. Laser & Optoelectronics Progress, 54, 090003(2017).

    [4] Li M X. Research on algorithms of Hartmann wave-front sensing operated with faint object[D]. Beijing: University of Chinese Academy of Sciences(2016).

    [5] Xuan L, Li D Y, Liu Y G. Prospect of liquid crystal adaptive optics in astronomy application[J]. Chinese Journal of Liquid Crystals and Displays, 30, 1-9(2015).

    [7] Arines J, Ares J. Minimum variance centroid thresholding[J]. Optics Letters, 27, 497-499(2002).

    [8] Liu D, Yu J. Otsu method and K-means[C]. International Conference on Hybrid Intelligent Systems, 344-349(2009).

    [9] Bradley C, Hubin N, Lardière O et al. Performance comparison of centroiding algorithms for laser guide star wavefront sensing with extremely large telescopes[J]. Applied Optics, 49, G78-G94(2010). http://www.opticsinfobase.org/abstract.cfm?URI=ao-49-31-G78

    [10] Nicolle M, Fusco T, Rousset G et al. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics[J]. Optics Letters, 29, 2743-2745(2004). http://mnras.oxfordjournals.org/external-ref?access_num=10.1364/OL.29.002743&link_type=DOI

    [11] Wang C C, Hu L F, Xu H Y et al. Wavefront detection method of a single-sensor based adaptive optics system[J]. Optics Express, 23, 21403-21413(2015). http://europepmc.org/abstract/med/26367988

    [12] Baik S, Park S, Kim C et al. A center detection algorithm for Shack-Hartmann wavefront sensor[J]. Optics & Laser Technology, 39, 262-267(2007). http://www.sciencedirect.com/science/article/pii/S0030399205001659

    [13] Yan B, Wang B, Li Y. Optimal ellipse fitting method based on least-square principle[J]. Journal of Beijing University of Aeronautics and Astronautics, 34, 295-298(2008).

    [14] Zhang T, Qi Y Q[M]. MATLAB image processing programming and application, 139-150(2014).

    [15] Xia M L. The development of high precision Hartmann wavefront detector for eye aberration[D]. Beijing: University of Chinese Academy of Sciences(2011).

    Rui Ge, Wen Shen, Chao Liu, Zhouping Su, Huaxin Zhu, Dayu Li, Xinghai Lu, Quanquan Mu, Zhaoliang Cao, Li Xuan, Lifa Hu. Distance-Power Index Weighted Centroid Detection Algorithm for Shack-Hartmann Wavefront Sensors[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040401
    Download Citation