• High Power Laser Science and Engineering
  • Vol. 6, Issue 1, 010000e8 (2018)
Ping Zhu, Xinglong Xie, Jun Kang, Qingwei Yang, Haidong Zhu, Ailin Guo, Meizhi Sun, Qi Gao, Ziruo Cui, Xiao Liang, Shunhua Yang, Dongjun Zhang, and Jianqiang Zhu
Author Affiliations
  • Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.1017/hpl.2018.6 Cite this Article Set citation alerts
    Ping Zhu, Xinglong Xie, Jun Kang, Qingwei Yang, Haidong Zhu, Ailin Guo, Meizhi Sun, Qi Gao, Ziruo Cui, Xiao Liang, Shunhua Yang, Dongjun Zhang, Jianqiang Zhu. Systematic study of spatiotemporal influences on temporal contrast in the focal region in large-aperture broadband ultrashort petawatt lasers[J]. High Power Laser Science and Engineering, 2018, 6(1): 010000e8 Copy Citation Text show less

    Abstract

    Temporal contrast is one of the crucial physical determinants which guarantee the successful performance of laser–matter interaction experiments. We generally reviewed the influences on the temporal contrast in three categories of noises based on the requirement by the physical mechanisms. The spatiotemporal influences on temporal contrast at the focal region of the chromatic aberration and propagation time difference introduced by large-aperture broadband spatial filters, which were spatiotemporally coupled with compression and focusing, were calculated and discussed with a practical case in SG-II 5 PW ultrashort petawatt laser. The system-wide spatiotemporal coupling existing in large-aperture broadband ultrashort petawatt lasers was proved to be one of the possible causes of temporal contrast degradation in the focal region.
    Ping Zhu, Xinglong Xie, Jun Kang, Qingwei Yang, Haidong Zhu, Ailin Guo, Meizhi Sun, Qi Gao, Ziruo Cui, Xiao Liang, Shunhua Yang, Dongjun Zhang, Jianqiang Zhu. Systematic study of spatiotemporal influences on temporal contrast in the focal region in large-aperture broadband ultrashort petawatt lasers[J]. High Power Laser Science and Engineering, 2018, 6(1): 010000e8
    Download Citation