• Optics and Precision Engineering
  • Vol. 28, Issue 9, 1958 (2020)
CHEN Tian-yu* and GU Ming-fei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.37188/ope.20202809.1958 Cite this Article
    CHEN Tian-yu, GU Ming-fei. Stoma suppression of laser sintering conductive circuit[J]. Optics and Precision Engineering, 2020, 28(9): 1958 Copy Citation Text show less
    References

    [1] LOPES A J, MACDONALD E, WICKER R B. Integrating stereolithography and direct print technologies for 3D structural electronics fabrication [J]. Rapid Prototyping Journal, 2012, 18(2): 129-143.

    [2] HONG S, YEO J, KIM G, et al.. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink [J]. ACS Nano, 2013, 7(6): 5024-5031.

    [3] ZHOU W P, BAI S, MA Y, et al.. Laser-direct writing of silver metal electrodes on transparent flexible substrates with high-bonding strength [J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24887-24892.

    [4] KO S H, PAN H, GRIGOROPOULOS C P, et al.. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles [J]. Nanotechnology, 2007, 18(34): 345202.

    [5] YANG M, CHON M W, KIM J H, et al.. Mechanical and environmental durability of roll-to-roll printed silver nanoparticle film using a rapid laser annealing process for flexible electronics [J]. Microelectronics Reliability, 2014, 54(12): 2871-2880.

    [6] THEODORAKOS I, ZACHARATOS F, GEREMIA R, et al.. Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics [J]. Applied Surface Science, 2015, 336: 157-162.

    [7] YIN C, JIN H, ZHOU Z, et al.. Processing and electrical properties of sodium citrate capped silver nanoparticle based inks for flexible electronics [C]. 2017 18th International Conference on Electronic Packaging Technology, Harbin, China: ICEPT, 2017: 1572-1576.

    [8] MAEKAWA K, YAMASAKI K, NIIZEKI T, et al.. Drop-on-demand laser sintering with silver nanoparticles for electronics packaging [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(5): 868-877.

    [10] SKYLAR-SCOTT M A, GUNASEKARAN S, LEWIS J A. Laser-assisted direct ink writing of planar and 3D metal architectures [J]. Proceedings of the National Academy of Sciences of the United State of America, 2016, 113(22): 6137-6142.

    [11] PENG P, HU A, ZHOU Y. Laser sintering of silver nanoparticle thin films: microstructure and optical properties [J]. Applied Physics A, 2012, 108(3): 685-691.

    [12] LIU W, WANG CH, WANG C Q, et al.. Laser sintering of nano-Ag particle paste for high-temperature electronics assembly [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(7): 1050-1057.

    [13] MAKRYGIANNI M, KALPYRIS I, BOUTOPOULOS C, et al.. Laser induced forward transfer of Ag nanoparticles ink deposition and characterization [J]. Applied Surface Science, 2014, 297: 40-44.

    [14] YUNG K C, WU S P, LIEM H. Synthesis of submicron sized silver powder for metal deposition via laser sintered inkjet printing [J]. Journal of Materials Science, 2009, 44(1): 154-159.

    [15] ZHAO P B, HUANG J Z, NAN J, et al.. Laser sintering process optimization of microstrip antenna fabricated by inkjet printing with silver-based MOD ink [J]. Journal of Materials Processing Technology, 2020, 275: 116347.

    [16] KIM M K, KANG H, KANG K, et al.. Laser sintering of inkjet-printed silver nanoparticles on glass and PET substrates [C]. 10th IEEE International Conference on Nanotechnology, Seoul, Korea: IEEE, 2010: 520-524.

    [17] BAI G. Low-temperature Sintering of Nanoscale Silver Paste for Semiconductor Device Interconnection [D]. Virginia: Virginia Polytechnic Institute and State University, 2005.

    [18] NIITTYNEN J, ABBEL R, MNTYSALO M, et al.. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink [J]. Thin Solid Films, 2014, 556: 452-459.

    [19] NIIZEKI T, MAEKAWA K, MITA M, et al.. Laser sintering of Ag nanopaste film and its application to bond-pad formation [C]. 2008 58th Electronic Components and Technology Conference, Orlando, Florida, United States: ECTC, 2008: 1745-1750.

    [20] ERMAK O, ZENOU M, TOKER G, et al.. Rapid laser sintering of metal nano-particles inks [J]. Nanotechnology, 2016, 27(38): 385201.

    [21] STEWART I E, KIM M J, WILEY B J. Effect of morphology on the electrical resistivity of silver nanostructure films [J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1870-1876.

    [22] KWAK J H, CHUN S J, SHON C, et al.. Back-irradiation photonic sintering for defect-free high-conductivity metal patterns on transparent plastic [J]. Applied Physics Letters, 2018, 112(15): 153103.

    [23] PAENG D, YEO J, LEE D, et al.. Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles [J]. Applied Physics A, 2015, 120(4): 1229-1240.

    [24] LEE D, KIM D K, MOON Y, et al.. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink [J]. Nanotechnology, 2013, 24(26): 265702.

    [25] ZENG P, ZAJAC S, CLAPP P C, et al.. Nanoparticle sintering simulations [J]. Materials Science and Engineering: A, 1998, 252(2): 301-306.

    [26] MAYO M J. Processing of nanocrystalline ceramics from ultrafine particles [J]. International Materials Reviews, 1996, 41(3): 85-115.

    CHEN Tian-yu, GU Ming-fei. Stoma suppression of laser sintering conductive circuit[J]. Optics and Precision Engineering, 2020, 28(9): 1958
    Download Citation