• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 2, 192 (2021)
Zhonghan ZHANG1、*, Yun DAI1、2, Yangxiao WANG1、2, Zhen ZHANG1、2, Anhua WU1、2, and Liangbi SU1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.02.008 Cite this Article
    ZHANG Zhonghan, DAI Yun, WANG Yangxiao, ZHANG Zhen, WU Anhua, SU Liangbi. Crystal growth techniques and applications of single-crystal fibers[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 192 Copy Citation Text show less
    References

    [1] Lu Z H, Zhao X S, Chen J Q, et al. Conditions and controls of the growth of single crystal fibers[J]. Journal of Synthetic Crystals, 1989, 18(2): 154-159.

    [2] Wu L S, Wang A H, Wu J M, et al. Several factors in Ti:sapphire single crystal fibers growth[J]. Journal of Synthetic Crystals, 1995, 24(4): 316-319.

    [3] Lebbou K. Single crystals fiber technology design. Where we are today?[J]. Optical Materials, 2017, 63: 13-18.

    [4] Fejer M, Byer R L, Feigelson R, et al. Growth and characterization of single crystal refractory oxide fibers[C]. Proceedings of SPIE, 1982, 0320: 50-55.

    [5] Yoon D-H, Yonenaga I, Fukuda T, et al. Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method[J]. Journal of Crystal Growth, 1994, 142(3-4): 339-343.

    [6] Ishida T, Togawa T, Morita H, et al. 6 kW and 10 kW high-power lamp-pumped MOPA Nd:YAG laser systems[C]. Proceedings of SPIE, 2000, 3888: 568-576.

    [7] Wang W C, Zhou B, Xu S H, et al. Recent advances in soft optical glass fiber and fiber lasers[J]. Progress in Materials Science, 2019, 101: 90-171.

    [8] Shcherbakov E A, Fomin V V, Abramov A A, et al. Industrial grade 100 kW power CW fiber laser[C]. Advanced Solid-State Lasers Congress, OSA Technical Digest (online), 2013, paper ATh4A.2.

    [9] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.

    [10] Kim W, Florea C, Baker C, et al. Single crystal fibers for high power lasers[C]. Proceedings of SPIE, 2012, 8547: 85470K.

    [11] Dawson J W, Messerly M J, Heebner J E, et al. Power scaling analysis of fiber lasers and amplifiers based on non-silica materials[C]. Proceedings of SPIE, 2010, 7686: 768611.

    [12] Harrington J A. Single-crystal fiber optics: A review[C]. Proceedings of SPIE, 2014, 8959: 895902.

    [13] Wang T, Zhang J, Zhang N, et al. Research progress in preparation of single crystal fiber and fiber lasers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170611.

    [14] Jackson S D. Towards high-power mid-infrared emission from a fiber laser[J]. Nature Photonics, 2012, 6: 423-431.

    [15] Hudson D D, Fuerbach A, Jackson S D. Progress in Mid-Infrared Fiber Source Development[M]. Peng G D (eds), Handbook of Optical Fibers, Springer Singapore, 2018: 5-10.

    [16] Saad M. Fluoride glass fiber: State of the art[C]. Proceedings of SPIE, 2009, 7316: 73160N.

    [17] Aydin Y O, Fortin V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545.

    [18] Messner M, Heinrich A, Unterrainer K. High-energy diode side-pumped Er:LiYF4 laser[J]. Applied Optics, 2018, 57(6): 1497-1503.

    [19] LaBelle H E, Mlavsky A I. Growth of controlled profile crystals from the melt: Part I-Sapphire filaments[J]. Materials Research Bulletin, 1971, 6(7): 571-579.

    [20] Burrus C A, Stone J. Single-crystal fiber optical devices: A Nd:YAG fiber laser[J]. Applied Physics Letters, 1975, 26(6): 318-320.

    [21] Andreeta M R B, Hernandes A C. Laser-Heated Pedestal Growth of Oxide Fibers[M]. Dhanaraj G, Byrappa K, Prasad V, et al (eds.), Springer Handbook of Crystal Growth, Springer Berlin Heidelberg, 2010: 393-342.

    [22] Fukuda T, Chani V I. Shaped Crystals: Growth by Micro-Pulling-Down Technique[M]. Springer-Verlag Berlin Heidelberg, 2007: 3-26.

    [23] Sangla D, Martial I, Aubry N, et al. High power laser operation with crystal fibers[J]. Applied Physics B, 2009, 97: 263-273.

    [24] Wildermuth S, Bohnert K, Brndle H, et al. Crystalline Bi4Ge3O12 fibers fabricated by micro-pulling down technique for optical high voltage sensing[J]. Procedia Engineering, 2011, 25: 507-510.

    [25] Lebbou K, Perrodin D, Chani V I, et al. Fiber single-crystal growth from the melt for optical applications[J]. Journal of the American Ceramic Society, 2006, 89(1): 75-80.

    [26] Pauwels K, Dujardin C, Gundacker S, et al. Single crystalline LuAG fibers for homogeneous dual-readout calorimeters[J]. Journal of Instrumentation, 2013, 8: P09019.

    [27] Xu X, Lebbou K, Moretti F, et al. Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics[J]. Acta Materialia, 2014, 67: 232-238.

    [28] Faraj Sara. Growth and Characterization of Ce Doped LuAG Single Crystal Fibers by the Micro-Pulling-Down Technique[D]. Lyon (France): l’Université Claude Bernard Lyon 1, 2017: 70-72.

    [29] Zhou D, Xia C, Guyot Y, et al. Growth and spectroscopic properties of Ti-doped sapphire single-crystal fiber[J]. Optical Materials, 2015, 47: 495-500.

    [30] Santo A M E, Ranieri I M, Brito G E S, et al. Growth of LiYF4 single-crystalline fibres by micro-pulling-down technique[J]. Journal of Crystal Growth, 2005, 475: 528-533.

    [31] Lelii F D, Shu J, Pirzio F, et al. Laser investigation of Yb:YLF crystals fabricated with the micro-pulling-down technique[J]. Applied Optics, 2018, 57(9): 2223-2226.

    [32] Veronesi S, Zhang Y, Tonelli M, et al. Efficient laser emission in Ho3+:LiLuF4 grown by micro-pulling down method[J]. Optics Express, 2012, 20(17): 18723-18731.

    [33] Sottile A, Zhang Z, Veronesi S, et al. Visible laser operation in a Pr3+:LiLuF4 monocrystalline fiber grown by the micro-pulling-down method[J]. Optical Materials Express, 2016, 6(6): 1964-1972.

    [34] Pirzio F, Jun S, Tacchini S, et al. Multi-watt amplification in a birefringent Yb:LiLuF4 single crystal fiber grown by micro-pulling-down[J]. Optics Letters, 2019, 44(17): 4095-4098.

    [35] Kim K J, Jouini A, Yoshikawa A, et al. Growth and optical properties of Pr, Yb-codoped KY3F10 fluoride single crystals for up-conversion visible luminescence[J]. Journal of Crystal Growth, 2007, 299(1): 171-177.

    [36] Shu J, Damiano E, Sottile A, et al. Growth by the μ-PD method and visible laser operation of a single-crystal fiber of Pr3+:KY3F10[J]. Crystals, 2017, 7(7): 200.

    [37] Yuan D S, Jia Z T, Shu J, et al. Development of micro-pulling-down equipment for crystal fiber growth and YAG single crystal growth[J]. Journal of Synthetic Crystals, 2014, 43(6): 1317-1322.

    [38] Yuan D, Li Y, Shu J, et al. Spatial nonlinear optics anisotropy and directional growth of TbCOB crystal by micro-pulling-down for SHG application[J]. Journal of Crystal Growth, 2016, 433: 59-62.

    [39] Wu B, Nie H, Wang A, et al. Factors influencing optical uniformity of YAG single-crystal fiber grown by micro-pulling-down technology[J]. CrystEngComm, 2019, 21: 6929-6934.

    [40] Yuan D, Jia Z, Li Y, et al. Micro-pulling-down furnace modification and single crystal fibers growth[C]. Proceedings of SPIE, 2016, 9726: 97260E.

    [41] Xu J, Song Q, Liu J, et al. The micro-pulling-down growth of Eu3+-doped Y3Al5O12 and Y3ScAl4O12 crystals for red luminescence[J]. Optical Materials, 2020, 109: 110388.

    [42] Zhao Y, Wang L, Chen W, et al. 35 W continuous-wave Ho:YAG single-crystal fiber laser[J]. High Power Laser Science and Engineering, 2020, 8: E25.

    [43] Fukuda T, Rudolph P, Uda S. Fiber Crystal Growth from the Melt[M]. Springer-Verlag Berlin Heidelberg, 2004: 1-46.

    [44] Andreeta M R B, Andreeta E R M, Hernandes A C, et al. Thermal gradient control at the solid-liquid interface in the laser-heated pedestal growth technique[J]. Journal of Crystal Growth, 2003, 234(4): 759-761.

    [45] Tong L. Growth of high-quality Y2O3-ZrO2 single-crystal optical fibers for ultra-high-temperature fiber-optic sensors[J]. Journal of Crystal Growth, 2000, 217(3): 281-286.

    [46] Maxwell G, Ponting B, Gebremichael E, et al. Advances in single-crystal fibers and thin rods grown by laser heated pedestal growth[J]. Crystals, 2017, 7(1): 12.

    [47] Bera S, Nie C D, Soskind M G, et al. Optimizing alignment and growth of low-loss YAG single crystal fibers using laser heated pedestal growth technique[J]. Applied Optics, 2017, 56(35): 9649-9655.

    [48] Nie C D. Rare-Earth-Doped Single-Crystal YAG Fibers Grown by the Laser Heated Pedestal Growth Technique[D]. New Brunswick, New Jersey: Rutgers University, 2017: 21-46.

    [49] Nie C D, Bera S, Harrington J A. Growth of single-crystal YAG fiber optics[J]. Optics Express, 2016, 24(14): 15522-15527.

    [50] Dubinskii M, Zhang J, Fromzel V, et al. Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high efficiency fiber lasers[J]. Optics Express, 2018, 26(4): 5092-5101.

    [51] Kim W, Shaw B, Bayya S, et al. Cladded single crystal fibers for high power fiber lasers[C]. Proceedings of SPIE, 2016, 9958: 99580O.

    [52] Shaw L B, Bayya S, Kim W, et al. Cladded single crystal fibers for all-crystalline fiber lasers[C]. Conference on Lasers and Electro-Optics, OSA Technical Digest (online),, paper SF3I.3.

    [53] Shaw L B, Bayya S, Kim W, et al. Fabrication of cladded single crystal fibers for all-crystalline fiber lasers[C]. Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online),, paper SoW2H.3.

    [54] Liu C, Wang T, Rou T, et al. Higher gain of single-mode Cr-doped crystalline core fibers by online controlling molten zone[C]. Conference on Lasers and Electro-Optics, OSA Technical Digest (online),, paper JTu5A.94.

    [55] Iskhakova L D, Kashin V V, Lavrishchev S V, et al. Facet appearance on the lateral face of sapphire single-crystal fibers during LHPG growth[J]. Crystals, 2016, 6(9): 101.

    [56] Ishibashi S, Naganuma K, Yokohama I. Cr, Ca:Y3A15O12 laser crystal grown by the laser-heated pedestal growth method[J]. Journal of Crystal Growth, 1998, 183: 614-621.

    [57] Wang T, Zhang J, Zhang N, et al. The characteristics of high-quality Yb:YAG single crystal fibers grown by a LHPG method and the effects of their discoloration[J]. RSC Advances, 2019, 9: 22567.

    [58] Wang T, Zhang J, Yang L, et al. Antioxidation and high-resolution ultrasonic temperature sensor based on Cr3+:MgAl2O4 single crystal fiber[J]. Crystal Growth & Design, 2020, 20(10): 6763-6768.

    [59] Wang T, Zhang J, Yang L, et al. Fabrication and sensitivity optimization of garnet crystal-fiber ultrasonic temperature sensor[J]. Journal of Materials Chemistry C, 2020, 8: 3830-3837.

    [60] Dai Y, Zhang Z, Su L, et al. Growth of high-quality Yb3+-doped Y3Al5O12 single crystal fiber by laser heated pedestal growth method[J]. Journal of Inorganic Materials, doi: 10.15541/jim20200475.

    [61] Dai Y, Zhang Z, Wang Y, et al. Growth of Tm:Lu3Al5O12 single crystal fiber from transparent ceramics by laser-heated pedestal method and its spectral properties[J]. Optical Materials, 2021, 111: 110674.

    [62] Fitzgibbon J J, Collins J M. High-volume production of low-loss sapphire optical fibers by Saphikon EFG (edge-defined, film-fed growth) method[C]. Proceedings of SPIE, 1998, 3262: 135-141.

    [63] LaBelle Jr H E. Growth of controlled profile crystals from the melt: Part II-Edge-defined, film-fed growth (EFG)[J]. Journal of Crystal Growth, 1971, 6(7): 581-589.

    [64] Chalmers B, Labelle Jr H E, Mlavsky A I. Edge-defined, film-fed crystal growth[J]. Journal of Crystal Growth, 1972, 13/14: 84-87.

    [65] Wang D, Hou W, Li N, et al. Defects and optical property of single-crystal sapphire fibers grown by edge-defined film-fed growth method[J]. Journal of Inorganic Materials, 2020, 35(9): 1053-1058.

    [66] Kurlov V N, Stryukov D O, Shikunova I A. Growth of sapphire and oxide eutectic fibers by the EFG technique[J]. Journal of Physics: Conference Series, 2016, 673(1): 012017.

    [67] Zhang Z, Wang S, Feng X, et al. Growth, characterization, and efficient continuous-wave laser operation in Nd, Gd:CaF2 single-crystal fibers[J]. Crystal Growth & Design, 2020, 20(10): 6329-6336.

    [68] Hara S, Ogino K. The densities and the surface tensions of fluoride melts[J]. ISIJ International, 1989, 29(6): 477-485.

    [69] Wang Y, Wang S, Wang J, et al. High-efficiency 2 μm CW laser operation of LD-pumped Tm3+:CaF2 single-crystal fibers[J]. Optics Express, 2020, 28(5): 6684-6695.

    [70] Zu Y, Zong M, Wang Y, et al. Self-Q-switched and broad wavelength-tunable lasing in Tm3+-doped CaF2 single-crystal fiber[J]. Applied Physics Express, 2020, 13: 102003.

    [71] Wang S, Tang F, Liu J, et al. Growth and highly efficient mid-infrared continuous-wave laser of lightly doped Er:SrF2 single-crystal fibers.[J] Optical Materials, 2019, 95: 109255.

    [72] Zhang Z, Wu Q, Wang Y, et al. Efficient 2.76 μm continuous-wave laser in extremely lightly Er-doped CaF2 single-crystal fiber[J]. Laser Physics Letters, 2020, 17: 085801.

    [73] Délen X, Piehler S, Didierjean J, et al. 250 W single-crystal fiber Yb:YAG laser[J]. Optics Letters, 2012, 37(14): 2898-2900.

    [74] Zaouter Y, Martial I, Aubry N, et al. Direct amplification of ultrashort pulses in μ-pulling-down Yb:YAG single crystal fibers[J]. Optics Letters, 2011, 36(5): 748-750.

    [75] Délen X, Zaouter Y, Martial I, et al. Yb:YAG single crystal fiber power amplifier for femtosecond sources[J]. Optics Letters, 2013, 38(2): 109-111.

    [76] Lesparre F, Gomes J T, Délen X, et al. Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 2016, 41(7): 1628-1631.

    [77] Quintanilla M, Zhang Y, Liz-Marzán L M. Subtissue plasmonic heating monitored with CaF2:Nd3+, Y3+ nanothermometers in the second biological window[J]. Chemistry of Materials, 2018, 30(8): 2819-2828.

    [78] ulc J, vejkar R, Němec M, et al. Er:SrF2 crystal for diode-pumped 2.7 μm laser[C]. Advanced Solid State Lasers, OSA Technical Digest (online),, paper ATu2A.22.

    [79] Su L, Guo X, Jiang D, et al. Highly-efficient mid-infrared CW laser operation in a lightly-doped 3 at.% Er:SrF2 single crystal[J]. Optics Express, 2018, 26(5): 5558-5563.

    [80] Lucchini M, Medvedeva T, Pauwels K, et al. Test beam results with LuAG fibers for next-generation calorimeters[J]. Journal of Instrumentation, 2013, 8: P10017.

    [81] Benaglia A, Lucchini M, Pauwels K, et al. Test beam results of a high granularity LuAG fibre calorimeter prototype[J]. Journal of Instrumentation, 2016, 11: P05004.

    [82] Lo C Y, Huang Y K, Chen J C, et al. Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission[J]. Optics Letters, 2004, 29(5): 439-441.

    [83] Zhang J, Zhang T, Zhang H, et al. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: From 1D fibers to multidimensional fabrics[J]. Advanced Materials, 2020, 32(36): 2002702.

    [84] Yang T I, Liu H T, Wang S C, et al. Formation of ceramic and crystal claddings for a Ti:sapphire crystalline fiber core[J]. Optical Materials Express, 2020, 10(5): 1215-1223.

    [85] Huang K Y, Hsu K Y, Jheng D Y, et al. Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique[J]. Optics Express, 2008, 16(16): 12264-12271.

    [86] Kim W, Bayya S, Shaw B, et al. Hydrothermally cladded crystalline fibers for laser applications[J]. Optical Materials Express, 2020, 9(6): 2716-2728.

    [87] Chen H, Buric M, Ohodnicki P, et al. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing[J]. Applied Physics Review, 2018, 5: 011102.

    ZHANG Zhonghan, DAI Yun, WANG Yangxiao, ZHANG Zhen, WU Anhua, SU Liangbi. Crystal growth techniques and applications of single-crystal fibers[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 192
    Download Citation